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ABSTRACT 
 

 

KEYWORDS: Laguerre Gaussian (LG) beam; Zeeman coherence; Hanle effect; 

Electromagnetically induced transparency (EIT); Electromagnetically induced 

absorption (EIA); Nonlinear magneto optical rotation (NMOR); Transfer of 

coherence (TOC); Higher order coherence (HOC); Linewidth. 

 

This thesis focuses on the interaction of the Rubidium (Rb) atoms with a coherent Laguerre-

Gaussian (LG) optical field with spatially varying phase factor and mode amplitude. Detailed 

computational and experimental studies have been carried out to understand the effect of the LG 

field on Zeeman coherence induced phenomena like electromagnetically induced transparency 

(EIT), electromagnetically induced absorption (EIA) and nonlinear magneto-optical rotation 

(NMOR). The LG beam brings about a significant narrowing in the line shapes of EIT and EIA 

resonances (measured in Hanle configuration) compared to a Gaussian beam. This narrowing is 

attributed to the azimuthal mode index of the LG field suggesting that optical fields with non-

zero orbital angular momentum (OAM) produce long-lived Zeeman coherences.  

 Resonant NMOR profiles with widths limited by the atomic transit time are also narrower 

when measured with a LG beam. However NMOR profiles with widths limited by spin-exchange 

collisions do not exhibit such a narrowing. Thus the spatial profile of the LG field influences 

resonance line shapes only if the relaxation time is dependent on spatial coordinates as in transit 

time relaxation.  

 The influence of the LG field on higher order Zeeman coherences (with 2 ±≥∆m ) has 

been investigated by carrying out ellipticity dependent polarization measurement as a function of 

laser detuning. This study enables us to extract the contribution of higher order Zeeman 

coherences from the measured data and shows that EIA systems (driven by excited state 

coherences) couple differently with the LG field compared to EIT systems (driven by ground 

state coherences). 
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E
�

                Electric field 

 

B
�

                 Magnetic field 

 

e                   Charge of the electron 

 

( ),A r t
�

�

          Vector potential 

 

( ),r tΦ
�

          Scalar potential 

 

℘                 Gauge function 

 

H                  Hamiltonian 

 

d
�

                  Dipole matrix element 

 

ρ                  Density matrix 

 

ψ                  Wave function 

 

k
�

                 Wave vector 

 

χ                  Atomic susceptibility 

 

L                  Total orbital angular momentum of electron 

 

S                  Total spin angular momentum of electron 

 

J                   Total angular momentum of electron 

 

F                  Total angular momentum of the atom 

 

I                   Nuclear spin 

 

Fm                 Magnetic quantum number 

 

Ω                  Rabi frequency 
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λ                  Wavelength of the laser 

 

γ                  Decoherence rate 

 

c                  Velocity of light 

 

Γ                  Spontaneous decay rate 
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ω                  Frequency of laser 

 

h                  Planck’s constant 
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Lω                 Larmor frequency 
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( )klp
RΘ
�

         Phase factor 

 

( )klp Rε
�

          Mode amplitude 

 

l                    Azimuthal mode index 

 

p                   Radial mode index 
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CHAPTER 1 

 

Introduction 

 

 

The interference of atomic wave functions in the presence of a coherent optical field results in 

the creation of coherence among the atomic states. Optical field induced coherences among the 

ground or excited state Zeeman sublevels of a hyperfine state are referred to as Zeeman 

coherences. The narrow transparency window or absorption in the probe absorption profile 

brought about by these coherences are responsible for interesting phenomena like Hanle 

electromagnetically induced transparency/absorption (EIT/EIA), nonlinear magneto-optical 

rotation (NMOR) etc. (Renzoni et al., 2001; McLeant et al., 1985; Barkov et al., 1989; Budker et 

al., 2002).  

        

      The influence of a spatially varying optical field on such coherent phenomenon is not well 

understood. This thesis focuses on Zeeman coherences created in the presence of a coherent 

Laguerre-Gaussian (LG) optical field with spatially varying phase factor and mode amplitude. 

The LG field which has a doughnut-shaped intensity distribution and zero intensity at the beam 

center is obtained as a solution of the paraxial wave function in cylindrical coordinates (Allen et 

al., 1992; Friese et al., 1996). It has a helical phase structure and carries an orbital angular 

momentum (OAM) of lћ per photon along their direction of propagation, in addition to the spin 

angular momentum depending upon the polarization (l = ±1, ±2,… is the azimuthal mode index 

and denotes order of the LG beam) (Allen et al., 1992; Friese et al., 1996). 

 

      The first work on beams with phase or screw dislocations was carried out by Nye and Berry 

in 1974 where they had talked about dislocations in the wave trains and shown that at the vortex 

the phase is indeterminate, with the wave amplitude being zero. Vaughan and Willet had 

examined the TEM01
*
 (superposition of TEM01 and TEM10 mode) doughnut mode having a 

helical wave front by frequency analysis and two beam interference techniques (Vaughan and 

Willetts, 1979; Willetts and Vaughan, 1980; Vaughan and Willetts, 1983). Bazhenov et al. 
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(1990) were the first to produce and study the properties of higher orders of coherent optical 

fields with wave-front dislocations by using amplitude holograms. They show that when the 

singularity of the helical wave front (left or right handed) was circumvented, it resulted in 

producing phase shifts in multiples of .2π  The right and the left handed screw dislocation was 

found to wind in opposite directions. Optical vortices and phase structured beams were also 

investigated by Tamm and Weiss (1990) and Harris et al. (1994). In all of these studies it was 

shown that the helical wave front with a singularity arises due to the presence of phase 

dislocation. Allen et al. (1992) were the first one to realize that the helically phased beams (LG 

beam) has azimuthal angular dependence of ( )φilexp  where ‘l’ is known as the azimuthal mode 

index or the topological charge and these beam carry an OAM of lћ per photon along their 

direction of propagation. The azimuthal phase index ‘l’ corresponds to the phase variation in 

units of π2 , i.e. the number of π2 phase cycles around the mode circumference (Allen et al., 

1992; Arlt et al., 2001). A detailed review on phase structured light can be found in Allen et al. 

(2003) and Andrews (2008).  

     

1.1 Objectives and scope of this work 

The optical forces and torque exerted by the LG beam on particles and atoms have been studied 

extensively and find interesting applications in cooling and trapping of atoms (Friese et al., 1996; 

Allen et al., 1996; Tabosa and Petrov, 1999). Nonlinear optical studies like the second harmonic 

generation with higher order LG beams have been reported (Courtial et al., 1997). The rotational 

frequency shifts induced by the LG beam due to its azimuthal phase dependence have been 

observed (Allen et al., 1994; Basistiy et al., 2003; Barreiro et al., 2006). Theoretical studies of 

force and mechanical torque exerted by OAM associated with the LG beam on a two and three-

level atomic systems have also been reported (Power et al., 1995; Allen et al., 1996; Lembessis, 

1999). 

      However, the influence of the LG beam on the atomic coherence and the associated 

spectroscopic phenomena like Hanle EIT/EIA and NMOR is not well known. This thesis 

focusses on the interaction of the Rubidium (Rb) atoms with a coherent LG optical field with 

spatially varying phase factor and mode amplitude. Detailed computational and experimental 

studies have been carried out to understand the effect of the LG field on the Zeeman coherences 
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arising as a result of such an atom-field interaction. For this purpose, the various Zeeman 

coherence induced phenomena like Hanle electromagnetically induced transparency (EIT) and 

electromagnetically induced absorption (EIA) and magneto-optical rotation in the Faraday and 

the Voigt geometry has been investigated in the presence of the LG beam.  

 

      The introductory chapter gives a brief introduction to the basic concepts of atom field 

interaction followed by density matrix formalism for a two-level atomic system. Optical/ 

Zeeman coherence induced phenomena like EIT, EIA, Hanle effect, NMOR have been described 

here. This chapter also covers the experimental details that have been involved in this work, like  

Rubidium (Rb) atoms, external cavity diode laser (ECDL), saturation absorption spectroscopy 

(SAS), Laguerre Gaussian (LG) beam, generation of LG beam. 

 

      Chapter 2 describes a computational and experimental study on Hanle electromagnetically 

induced transparency and absorption resonance line shapes with a LG beam. Two-beam Hanle 

measurement was carried out where the Hanle profile was measured with a Gaussian beam in the 

presence of the LG beam. To understand the influence of the LG field on the transit effect 

limited phenomena, a comparative study has been carried out with a ring shaped beam with zero 

OAM.  

 

       Chapter 3 presents the NMOR-I and II measurements that were carried out with the LG 

field. The nonlinear magneto-optical rotation response of the Rb
87

(Fg=2→Fe′ =3) transition with 

magnetic field applied parallel (Faraday geometry) and perpendicular (Voigt geometry) to the 

probe field (Gaussian or LG) direction has been studied. To investigate other manifestations of 

the LG field influence, a computational analysis was carried out with a lambda ( Λ ) system to 

study EIT and reduced group velocity in the presence of the LG beam. 

 

      Chapter 4 discusses ellipticity dependent polarization rotation measurements with a LG 

beam. The influence of the LG beam on higher order Zeeman coherences (with 2 ±≥∆m ) is 

studied by extracting their contribution from the measured data. 

 

      Chapter 5 presents a summary and highlights of the research work along with possible future 

proposals.  
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1.2 Atom field interaction 

 

This thesis is primarily based on the interaction of LG optical field with Rb atoms and hence a 

brief introduction to the basic concept of atom field interaction is discussed in this section. 

 

      The minimum-coupling Hamiltonian (the particle is minimally coupled with the electro-

magnetic field) associated with an electron of charge, eq −=   and mass m interacting with the 

external magnetic field is given by (Scully and Zubairy, 1997; Gerry and Night, 2005) 

 

( )( ) ( )
21

, , ( ),
2

H p eA r t e r t V r
m

= + − Φ +
�� � �

                                                                       (1.1)  

where, ( ),A r t
� �

and ( ),r tΦ
�

 are the vector and the scalar potential of the electromagnetical field 

respectively, )(rV is the electrostatic potential (atom binding potential) and p
�

 is the canonical 

momentum operator. 

      The electric and the magnetic fields can be described in terms of the gauge dependent 

potentials as follows 

( ) ( )
( )

( ) ( )

,
, ,

.

, ,

A r t
E r t r t

t

B r t A r t

∂
= −∇Φ − 

∂ 
= −∇× 

� �
� � �

�� � �
                                                                                       (1.2) 

The electric and the magnetic fields are invariant under the following gauge transformation 

( ) ( ) ( )

( ) ( )
( )

, , ,

,,
, ,

A r t A r t r t

r t
r t r t

t

′ = +∇℘

∂℘

′Φ = Φ − 
∂ 

� �� � �

�
� �                                                                                           (1.3) 

where, ℘is the Gauge function and the choice of gauge in this case is the coulomb (radiation) 

gauge as it has the advantage of completely describing the radiation field by the vector potential. 

The Coulomb gauge, where the charge is conserved, is described as follows 

( ). , 0A r t∇ =
� �

  (Transversality condition)                                                                            (1.4a) 
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( ), 0.r tΦ =
�

                                                                                                                           (1.4b) 

After applying the gauge transformation, the Hamiltonian can be re-written as 

( ) ( ){ }( ) ( )
( )2 ,1

 , ,  , ( ).
2

r t
H p e A r t r t e r t V r

m t

∂℘ 
′ = + +∇℘ − Φ − + 

∂ 

�
�� � � �

                (1.5) 

The vector potential satisfies the wave equation 

( )
( )2

2

2 2

,1
, 0.

A r t
A r t

c t

∂
∇ − =

∂

� �
� �

                                                                                              (1.6) 

And the solution of the wave equation is given by 

( ) ( )0
ˆ, exp  .A r t A i k r tε ω = ⋅ −

 

�� � �
                                                                                      (1.7) 

On separating out the time and the space coordinates, the vector potential can be written as 

( ) [ ]0
ˆ, exp  expA r t A i t ik rε ω  = − ⋅ 

�� � �
                                                                                 (1.8) 

( ) ( ), exp .A r t A t ik r ⇒ = ⋅ 

�� � �
                                                                                             (1.9) 

The exponential term of (1.9) can be expanded as 

( )
2

exp 1 .........
2!

ik r
ik r ik r

⋅
 ⋅ = + ⋅ + + 

� �
� �� �

                                                                         (1.10) 

      Making the dipole approximation where the atomic dimension is much smaller than the 

optical wavelength i.e. 1k r⋅ <<
� �

 (Louden, 1983). Hence (1.10) reduces as 

( ) ( )exp 1;  , .ik r A r t A t ⋅ ≈ = 

� �� �
                                                                                         (1.11) 

And ℘ is chosen such that the following conditions are satisfied 

( ) ( ),r t A t r℘ = − ⋅
�� �

                                                                                                             (1.12a) 
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( ) ( ),r t A t∇℘ = −
��

                                                                                                             (1.12b) 

( )
( )( ) ( )

( )
�

( )

0

,

                                           .

r t A t r
A t r r A t

t t t t

A t
r r E

t

 
∂℘ ∂∂ ∂ 

= − ⋅ = − ⋅ + ⋅ 
∂ ∂ ∂ ∂ 

 

∂
= − ⋅ = − ⋅

∂

�� �� �� �

�
�� �

                                                (1.12c) 

On substituting (1.11), (1.12) in (1.5), we have, 

( ) ( ){ }( ) ( ){ }

( )

2

2

1
  0 ( )

2

( ) .
2

H p e A t A t e r E t V r
m

p
V r er E t

m

 ′ = + − − − − ⋅ + 

= + − ⋅

� � �� �

��                                    (1.13) 

Incorporating the definition of dipole moment ( )d er=
� �

in (1.13), we have 

( )
2

( )
2

p
H V r d E t

m
′ = + − ⋅

� �
                                                                                                  (1.14) 

2

( )
2

o

p
H V r

m
= +                                                                                                                                        (1.15a) 

( )I
H d E t= − ⋅

� �
                                                                                                                   (1.15b) 

,
o I

H H H′ = +                                                                                                                                               (1.16) 

where, oH  and IH  represents the unperturbed Hamiltonian and the atom-field interaction 

Hamiltonian of the system respectively. 

 

1.3 Density matrix formalism for a two-level atomic system 

A simple two-level atomic system is given in Figure 1.1. The ground and the excited states are 

given by the column vectors 
0

1
b

 
=  
 

 and 
1

0
a

 
=  
 

respectively. The spontaneous decay of the 
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excited state is given by Γ and
pr

ω  represents the frequency of the incident probe beam. The one-

photon detuning is given by 
pr pr

ω ω∆ = − , where ω  represents the resonant frequency. 

 

Figure 1.1:  A simple two-level atomic system is illustrated, where a  and b represents the 

excited and ground states respectively. 

 

      The wave function ( ),r tψ can be used to describe the atomic system in terms of the 

probability amplitude ( )ac t  and ( )bc t associated with the states a  and b  respectively.  

( ) ( ) ( ) ( ) ( ), exp exp ,a b

a a b b

iE t iE t
r t c t r c t rψ ψ ψ

   
= − + −      

� �

� �
                              (1.17) 

where, the probability of finding the system in the state i is given by ( )
2

i
c t . 

      Usually, the Schrodinger equation is used to describe a single particle but if the number of 

particles increases then the calculations that are involved to describe the evolution of such a 

system becomes complicated. Moreover, it is not simple to include the decay of the excited state 

in the wave-function description of the atom-light interaction. Density matrix is a tool that 

enables the description of an ensemble of atoms and this formalism can be used to study the 

coherence effects arising due to the atom-field interaction. The density matrix is defined by the 

projection operator as 

.ρ ψ ψ=                                                                                                                            (1.18) 

 

Ignoring the time dependence, (1.17) can be re-written as 

.
a b

c a c bψ = +                                                                                                              (1.19) 

 

On substituting (1.19) in (1.18) 
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( ) ( ) 
a b a b

c a c b c a c bρ ∗ ∗= + +                                                                               (1.20) 

( ) ( ) ( ) ( )
1 1 0 0

    1 0 0 1 1 0 0 1
0 0 1 1

a a a b b b b a

a a a b b a b b

c c a a c c a b c c b b c c b a

c c c c c c c c

ρ ∗ ∗ ∗ ∗

∗ ∗ ∗ ∗

= + + +

       
= + + +       

       

          (1.21) 

2

2
.

a a baa ab a a a b

ba bb b a b b b a b

c c cc c c c

c c c c c c c

ρ ρ
ρ

ρ ρ

∗∗ ∗

∗ ∗ ∗

   
 ⇒ = = =         

                                               (1.22) 

      The diagonal term in the density matrix gives the atomic population and the off-diagonal 

term represents the atomic coherence associated with the two-level atomic system. To obtain the 

expression for the atomic susceptibility ( )χ , the macroscopic polarization P
�

is considered which 

gives the average dipole moment of all the atoms present in the medium and is defined as 
 

.P N d=
��

                                                                                                                                                    (1.23) 

 

The dipole moment can be expressed in terms of the density matrix as follows 

( ) ,d Tr dρ=
� �

                                                                                                                                            (1.24) 

where, trace of an operator is given by ( )ˆ ˆ

j

Tr O j O j=∑ . 

      For mixed states, the density matrix is defined as
i i i

i

Pρ ψ ψ=∑ ; iP  gives the probability 

of finding the system in the state i
ψ  and 1

i

i

P =∑  and (1.24) can be written as 

 .
i i i i i i

j i j i j

d j d j P j d j P d j jρ ψ ψ ψ ψ= = =∑ ∑∑ ∑∑
� � � �

              (1.25) 

 

Using the completeness relationship I
j

j j =∑  (1.25) reduces as 

.
i i i

i

d P d= Ψ Ψ∑
� �

                                                                                                                            (1.26) 

On substituting (1.26) in (1.23), we have 
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.
i i i

i

P N P d= Ψ Ψ∑
��

                                                                                                                           (1.27) 

The macroscopic polarization for a two-level atomic system can be written as 

0 0

 .P N a d a a d b b d a b d b

↓ ↓

 
  

= + + + 
 
  

� � � ��

����� �����                                                                  (1.28) 

      The first and the last terms in the RHS of (1.28) is 0 as the dipole moment connects states of 

opposite parity (parity conservation). 

{ } ( )

( )

 

    .

ba ab ba

i t i t

ba ab ba

P N a d b b d a Nd

Nd e e
ω ω

ρ ρ

ρ ρ− +

= + = +

= +

� ��

� �
                                                                       (1.29) 

 

      The oscillatory terms in the atom interaction Hamiltonian can be removed by making the 

slow variable transformation i.e., the atom interaction Hamiltonian is transformed into a frame 

that rotates with the laser frequency (Purves, 2006). The slow variables are defined as, 
 

; ,

.

i t

ab ab ab ab

i t

ba ba

e

e

ω

ω

ρ ρ ρ ρ

ρ ρ

+ ∗

+

= =

=

� �

�
 

 

The macroscopic polarization can also be expressed in terms of the electric field vector as 
 

0 .
2

E E
P

χ χ
ε

∗ ∗+
=

� �
�

                                                                                                                                  (1.30) 

Where the electric field vector is given by, 

pri t

pr
E E e

ω−
=
�

 

( )0

1
.

2

pr pri t i t

prP E e e
ω ω

ε χ χ
− +∗= +

�
                                                                                                      (1.31) 

      On comparing (1.29) and (1.31), the final expression for the atomic susceptibility associated 

with the two-level atomic system is given by 

2

0

2
.ba

ab

Nd
χ ρ

ε
= −

Ω
�

�
                                                                                                                                        (1.32) 
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      The Rabi frequency denoted by Ω  appearing in the denominator of (1.32), represents the 

strength of the atom field interaction and is defined as 

.
ba pr

d Ed E⋅
Ω = − = −

� �

� �
                                                                                                                          (1.33) 

The relation between the Rabi frequency and the intensity of the probe beam is given by 

2

2

I 2
,

I
sat

Ω
=

Γ
                                                                                                                           (1.34)                            

      

where, Isat  is the power corresponding to the saturation intensity and it is found to be 1669 

µW/cm
2  

for the 1σ ± polarized Rb
87

 atoms locked to Fg =2→Fe′ =3 transition (Steck, 2010). 

 

       In this section, the expression for the atomic susceptibility ( )χ has been obtained in terms of 

the atomic coherence ( )ab
ρ� using the density matrix formalism (1.32). The corresponding 

absorption and the dispersion profiles are given by the imaginary and real part of susceptibility 

respectively. 

 

1.4 Optical field induced coherences 

 

To describe the optical field induced coherences, the density matrix is expanded in terms of the 

irreducible tensor ( )k

q
T and light induced multipole moments ( )k

q
ρ as (Ducloy et al., 1973; 

Omont, 1977; Budker et al., 2002, 2004) 

( ) ( );

,

,  , ,
e e g g

e g

k k

F m F m q e g q e g

F F kq

F F T F Fµ β
µβ

ρ ρ µ β µ β= ∑                                           (1.35) 

where, &µ β are the labels to specify the state, 
e g

&F F represents the hyperfine quantum number 

of the excited and the ground states respectively and
e g&m m denotes the magnetic Zeeman 

sublevels of the excited and the ground states respectively. 
k

q
T is the irreducible tensor of order k 

and component q ( ),  .....,  q k k= − +  such that 
e g

q m m m= − = ∆ (Ducloy et al., 1973).   
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      The multipole moment 0

0ρ  ( 0q m= ∆ = ) corresponds to the population term, 1

1ρ  represents 

the magnetic dipole moment and 2

2ρ denotes the electric quadrupole moment. In general, 

0q m= ∆ ≠ represents the atomic coherence (Ducloy et al., 1973; Omont, 1977; Budker et al., 

2002).  

 

      Odd orders of ρ describes optical coherences ( ge  FF ≠ ) and even orders with ge  FF =   

describe level populations ( )0=∆m  and Zeeman coherences ( )0≠∆m  (Budker et al., 2002). 

Optical field induced coherences that are created among the ground or excited state Zeeman 

sublevels are referred to as Zeeman coherences. The coherence that is formed between different 

hyperfine states ( )0; ge =≠ kFF  refers to the hyperfine coherence (Omont, 1977; Tremblay and 

Jacques, 1990; obodzińskiL  and Gawlik, 1996). The optical, hyperfine and Zeeman coherences 

that are created during the atom-field interaction has been illustrated for the two level degenerate 

atomic system (Fg1,g2 → Fe1 ) as shown in Figure 1.2.  

 

 

 

Figure 1.2:  Illustration of the optical and Zeeman coherences for the transition Fg1,g2 → Fe1. 

 
 

      Optical field induced coherences are responsible for phenomena like Hanle 

electromagnetically induced transparency/absorption (EIT/EIA), non-linear magneto-optical 

rotation (NMOR) etc. which are discussed in the next section. 
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1.5 Optical/Zeeman coherence induced phenomenon 

 

1.5.1 Electromagnetically induced transparency (EIT) 

 

EIT is a phenomenon in which the atomic medium is rendered transparent for a resonant probe 

field in the presence of another pump beam resonant with a common higher/lower energy level 

(Fleischhauer et al., 2005). The underlying principle behind EIT can be explained in terms of the 

creation of dark states, that is, the non-coupled state which comprises of the superposition of the 

ground states.  

 

      Different three level schemes such as lambda ( Λ ), Vee (V ) and ladder (cascade) can be used 

to illustrate the EIT phenomena (Scully and Zubairy, 1997). A typical Λ  scheme is shown in 

Figure 1.3.  

 
 

Figure 1.3:  The lambda system that can be used to study EIT is shown here. 
 

     
pr

Ω and 
pu

Ω  represents the Rabi frequency associated with the probe and the coupling beam. 

The frequency of the probe and the coupling beam is given by
prω  and

puω  (Figure 1.3). Figure 

1.4 illustrates the two excitation pathways namely (i) ab →  and (ii) acab →→→  

that are involved in the process of EIT (Marangos, 1998). Due to the interaction of the atoms 

with the optical fields, the bare states cba &, no longer form the eigenstates of the 

interaction Hamiltonian 
IH . Therefore the eigenstates of 

IH  is given by the dressed states 

which are nothing but the superposition of these bare states.      
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Figure 1.4:  Illustration of the excitation pathways and the dressed state picture involved in the 

EIT process. 

 

The dressed states are given as 

( )

( )

2 2 1/2

2 2 1/2

1

[ ]

1
.

[ ]

pr pu

pr pu

pr pu

pr pu

C b c

NC b c

= Ω + Ω
Ω + Ω

= Ω − Ω
Ω + Ω

                                                                                  (1.36) 

      The state C  called as the coupled state, interacts with both the probe and the coupling 

beam. On the other hand, NC which represents the non-coupled states is completely cut off 

from the excited state a . This can be illustrated by considering the transition moment between 

the states NC and a  which is given by 

2 2 1/2 2 2 1/2
.

[ ] [ ]

pr pu

pr pu pr pu

NC d a b d a c d a
Ω Ω

= −
Ω + Ω Ω + Ω

� � �
                                     (1.37) 

      By suitably adjusting the Rabi frequencies 
prΩ and

puΩ , the transition moment adNC
�

can 

be reduced to zero. In other words, destructive interference between the probability amplitude 

associated with the excitation pathways can be brought about by adjusting the Rabi frequency 

associated with the probe and the pump beam, thus totally cutting off the dark state from 

coupling to the higher energy level. This results in the trapping of atoms in the dark state thus 

making the medium transparent to the probe absorption (Arimondo, 1996; Marangos, 1998; 

Fleischhauer et al., 2005). The EIT spectrum that is obtained for this lambda system is shown in 

Figure 1.5. The condition for the formation of dark state, 0=adNC
�

 is satisfied in Figure 1.5 

(b) giving rise to EIT. 
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Figure 1.5:  The absorption profile as a function of probe detuning for (a) pr puΩ >> Ω and (b) 

pr puΩ << Ω .  

 

1.5.2 Electromagnetically induced absorption (EIA) 

 

EIA is an opposite effect in which there is an enhancement in the probe absorption under the 

action of a pump beam due to the transfer of coherence (TOC) between the excited and ground 

states via spontaneous emission in a two-level degenerate system (Akulshin et al., 1998; Lezama 

et al., 1999; Taichenachev et al., 1999). For the observation of EIA, the ground state must be 

degenerate to allow for the formation of long lived Zeeman coherences (Lezama et al., 1999; 

Taichenachev et al., 1999).  

There are two ways to obtain EIA in a two-level degenerate system (Goren et al., 2003) 

(a)    Transfer of coherence (TOC); the polarization of the probe and the pump beam must be 

different. 

(b)    Transfer of population (TOP); the polarization of the probe and the pump beam must be 

same. In this case EIA resonances are formed due to the collisional transfer of population 

from the ground state to reservoir (other decay channel) 
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      N-type interaction scheme [(Figure 1.6(a)] is the simplest atomic system that can be used to 

demonstrate the EIA process (Taichenachev et al., 1999). A typical EIA profile is shown in 

Figure 1.6(b). 

         

     

     

                           (a)                                                                          (b) 

Figure 1.6:  (a) N-type interaction scheme (b) The probe absorption profile as a function of 

probe detuning to illustrate the EIA process. 

 

1.5.3 Hanle effect 

 

EIT and EIA in a degenerate two level systems can be observed by measuring the transmission 

or fluorescence of a resonant optical field as a function of a magnetic field scanned through zero. 

This is referred to as the Hanle configuration (Dancheva et al., 2000). When the magnetic field is 

scanned along the direction of propagation it is known as the Faraday geometry [Figure 1.7 (a)]. 

In the case of the Voigt geometry, the magnetic field is scanned perpendicular to the direction of 

propagation [Figure 1.7 (b)].  

 

                                                                                                                                                                                                                                              (a)                                    (b) 

Figure 1.7:  Illustrates (a) Faraday geometry (b) Voigt geometry.  
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      Consider the two level atomic system shown in Figure 1.8. The optical field is said to be 

σ polarized when its electric field vector is directed perpendicular to the quantization axis 

satisfying the selection rule 1
f

m∆ = ±  (Figure 1.8). When the electric field vector is along the 

direction of the quantization axis, then the optical field is said to be π  polarized satisfying the 

selection rule 0
f

m∆ = .  

      Zeeman coherences will be created among the ground state sublevels when the following 

condition is satisfied (Harper, 1972) 

1 1
,

g g
ω γ

− +
≤                                                                                                                              (1.38) 

where,γ represents the decoherence rate and
1 1g g

ω
− +

is the frequency difference between the 

Zeeman sublevels 
1 1&g g− + .   

      The condition given by (1.38) will be satisfied only when 
1 1

0
g g

ω
− +

≈ , i.e. at zero magnetic 

field. The application of the magnetic field shifts the Zeeman sublevels resulting in the 

destruction of the Zeeman coherences (Figure 1.8). The shift in the Zeeman sublevels is given 

by the Larmor frequency, Lω  which is related to the magnetic field by the expression 

,B
L

g Bµ
ω =

�
                                                                                                                                                  (1.39) 

where, B is the magnetic field, Bµ is the Bohr magneton (= 1.399MHz/Gaussh× ) and g the 

gyromagnetic ratio.  

 
 

Figure 1.8:  The creation and destruction of the ground state Zeeman coherence in the two-level 

atomic system Jg =1 → Je =0. 
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      The narrow Hanle EIT/EIA profile arises as a result of the destruction of ground or excited 

state Zeeman coherence by a magnetic field (Harper, 1972; Renzoni et al., 2001). This 

explanation is valid only when the quantization axis is chosen along the direction of the magnetic 

field. When the quantization axis is chosen perpendicular to the direction of the magnetic field, 

then the Hanle resonances can be explained in terms of the transfer of population (Renzoni et al., 

2001). The Hanle EIT and EIA profile is shown in Figure 1.9 (a) & (b) respectively.  

      The interaction of the two level atomic system Jg =2 → Je =1 with the π  polarized beam 

results in the accumulation of the atoms in the magnetic sublevels 
2g− and 

2g+ due to spontaneous 

emission [Figure 1.9 (a)]. There will be transfer of population among the ground state sublevels 

on the application of the magnetic field perpendicular to the direction of light polarization. The 

redistribution of the atoms enhances the population of the absorbing ground state magnetic 

sublevels. This results in a narrow dip in the probe absorption profile when the magnetic field is 

scanned through zero- known as the Hanle EIT resonance [Figure 1.9 (a)]. 

                             

          
                                 (a)                                                                  (b) 

Figure 1.9:  (a) Hanle EIT that has been observed for the transition Jg =2 → Je =1 (b) Hanle EIA 

that has been observed for the transition Jg =1 → Je =2. 
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      For the two level atomic system Jg =1 → Je =2, the presence of the π polarized beam renders 

the magnetic sublevel 
0g as the most absorbing state [Figure 1.9 (b)]. Application of the external 

magnetic field redistributes the atoms thus resulting in a decrease in the absorption. Therefore an 

enhanced absorption peak can be observed at zero magnetic field as shown in Figure 1.9 (b). 

This is known as the Hanle EIA resonance (Alnis and Auzinsh,  2001). 

 

Figure 1.10:  Illustrates the formation of oriented state for the transition Jg =1 → Je =1 due to  

optical pumping. 
 

      Atomic polarization refers to the polarization of the atoms due to optical pumping and they 

are found to precess at a Larmor frequency Lω in the presence of the magnetic field. To illustrate 

atomic polarization, consider the two level atomic system Jg =1 → Je =1 given in Figure 1.10.  If 

the optical field with σ + polarization (satisfying the selection rule 1
f

m∆ = + ) interacts with the 

two level atomic system, optical pumping assembles the atoms in the non-absorbing sublevel 

1
f

m = + as it is not coupled to the excited states. The resulting atomic ensemble is said to be an 

oriented state (Rochester and Budker, 2000).         

  

1.5.4 Nonlinear magneto-optical rotation (NMOR) 

As discussed in the previous section, the magnetic Zeeman sublevels ( )1
f

m = ± are shifted by 

Lω±� on the application of the magnetic field (Figure 1.8). Therefore the refractive index 

associated with the left ( )σ + and the right ( )σ − circularly polarized light will be different 

resulting in magneto-optical activity known as the Faraday effect [Figure 1.11(a)]. This effect 

was first discovered in 1846 (Faraday, 1855).  Macaluso and Corbino (1898) had discovered that 

the magneto-optical activity associated with the alkali atoms exhibited resonant character near 

the resonant absorption line. This is known as the resonant magneto-optical rotation. 
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                        (a)                                                                 (b) 

Figure 1.11:   (a) Shows the shifting of the Zeeman sublevels on the application of magnetic 

field (b) Illustrates the schematic of the Faraday effect. 
 

     The expression for the probe beam placed between a polarizer (P1) and an analyzer (P2) 

[Figure 1.11(b)] known as the forward scattered signal (the resonant light is scattered in the 

direction of the incident field) is given by (Gawlik, 1994; Budker et al., 2002), 

( ) ( ) ( ) ( ) ( )
2 //  / 2

I
II

1
4 sin ,

4

l cl c l cF

FSI e e d e l n n d
c

ω α αα ω α ω ω
ω ω ω ω+ −+ − − +− −

+ −= ϒ − + ϒ −∫ ∫������������� �����������������
    

                                                                                                                                                  (1.40) 

where, and α α+ − represents the absorption of the left and the right circularly polarized beam 

respectively, and n n+ − is the refractive indices associated with left and right circularly polarized 

beam and l is the length of the atomic cell. ( )ωϒ gives the spectral density of the incident light. 

The overall contributions to the F

FS
I signal due to the terms I and II are comparable. Atomic 

absorption and dispersion are given by terms I and II of (1.40). Anisotropy in the absorption and 

the dispersion exhibited by the probe beam of opposite circular polarization gives rise to the 

circular dichroism and the circular birefringence effect. While the dispersion anisotropy 

( and n n+ − ) is proportional to the rotation of the plane of polarization of the incident probe beam, 

the absorption anisotropy is proportional to ellipticity (Gawlik, 1994; Budker et al., 2002). The 

two contributions to the F

FS
I signal have different frequency dependencies. The dichroic effect 

(first term) is anitsymmetric with respect to laser detuning. Therefore tuning the laser to the 

center of the resonance reduces the first integral to zero, eliminating the dichroic effect. 
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      In a two level atomic system, the Faraday effect is given by the resonant rotation (by an angle 

ϕ ) of the plane of polarization of the incident beam in the presence of a longitudinal magnetic 

field due to a difference in the refractive indices ( and n n+ − ) associated with left and right 

( and σ σ+ − ) circularly polarized beams respectively (Chen et al., 1987; Gawlik, 1994; Patnaik 

and Agarwal, 2000), given by  

( ).
l

n n
π

ϕ
λ

+ −= −                                                                                                                                       (1.41) 

      In the nonlinear regime, the macroscopic polarization discussed in Section 1.3, can be 

expanded in terms of susceptibility and electric field as (Chen et al., 1987; Chen et al., 1990; 

Holmes and Griffith, 1995; Budker et al., 2002) 

( ) ( )

1

.
n n

n

P Eχ
∞

=

=∑
� �

                                                                                                                                          (1.42) 

      While, first order susceptibility term ( )1χ is used to describe the linear Faraday effect, the 

nonlinear magneto-optical effects, where the interaction of light with the atomic medium results 

in the modification of its optical properties can be attributed to the ( )3χ process (Chen et al., 

1990; Holmes and Griffith, 1995; Budker et al., 2002). Holmes and Griffith (1995) evaluated 

( )3χ using the third order perturbation theory and shown that 2m∆ = ± Zeeman coherence is 

responsible for NMOR. NMOR has been studied in level schemes such as ,Λ V or X (Chen et 

al., 1990; Ståhlberg et al., 1990).  

      To carry out the NMOR measurements balanced polarimetry arrangement is used. The 

signals incident on both the photo diodes (PDs) is balanced off-resonance either by orienting the 

analyzer P2 at an angle of with respect to the polarizer P1 [Figure 1.11 (b)] or by means of a 

half wave plate (HWP) (Figure 3.1), placed right after the cell (Budker et al., 2002). This kind of 

arrangement ensures that the measured differential signal does not depend upon the induced 

ellipticity. Therefore the rotation of the plane of polarization (ϕ ) of the probe beam due to its 

interaction with the resonant medium is obtained by measuring the differential signal between 

the two PDs. The expression for ϕ  is given by (Huard, 1997) 
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( )
1 2

1 2

,
2

I I

I I
ϕ

−
=

+
                                                                                                                    (1.43) 

where, 1I  and 2I  represents the light intensities incident on both the photodiodes. 

 

1.6 Experimental details 

 

1.6.1 Rubidium (Rb) atoms 

 

Rb atoms has an atomic number Z=37 with the electronic configuration of [Kr] 5S
1
. It has a 

vapor pressure of the order of 10
-7

 Torr at a temperature of 20
°
 C (Steck 2010). The energy level 

diagram of these atoms is shown in Figure 1.12. The splitting of the spectral lines due to the 

spin-orbit coupling gives rise to the fine structure as shown in Figure 1.12.  

      The two lines - D1 (transition 5S1/2 → 5P1/2) and D2 line (transition 5S1/2 → 5P3/2) resonates 

at a wavelength of 795 nm and 780 nm respectively.  The hyperfine structure arises due to the 

interaction of the total angular momentum associated with an unpaired electron ( SLJ += ) with 

the nuclear spin ( I ) of the atoms, i.e. IJF += where denotes the hyperfine / total angular 

momentum quantum number.  

 

 
 

                                           (a)                                                       (b)  

Figure 1.12:   Energy level diagram for (a) Rb87 and (b) Rb85. The transition that has been 

studied experimentally is highlighted by red line. 
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      Rb
87 

(~28%)
 
and Rb

85 
(~72%)

  
are the two naturally occurring isotopes of the Rb atoms with 

the nuclear spin of 2/5 &  2/3=I  respectively. Each of the hyperfine level will have 

12 +F magnetic Zeeman sublevels. The application of the magnetic field removes the 

degeneracy among these Zeeman sublevels. The allowed transition among the hyperfine and the 

magnetic Zeeman sublevels follow the selection rule 0,  1F∆ = ± and 0,  1m∆ = ±  respectively. 

For all the field scan experiments, the ECDL has been locked to Rb
87

(Fg=2→Fe′=3) transition, 

highlighted by red line in Figure 1.12. 

 

1.6.2 External cavity diode laser (ECDL)  

 

Two external cavity diode lasers (ECDL); (1) Sacher Lasertechnik TEC 100 (Sacherlasertechnik, 

2003) and (2) homebuilt laser unit loaned by Quantum optics lab at Raman Research Institute 

(RRI), Bangalore, India have been used for experimental purposes. The ECDL operates at a 

wavelength of 780 nm and the associated schematic is shown in Figure 1.13. On applying 

current through the laser diode, diverging beam with a width of few GHz is generated as a result 

of which the laser operates in the multimode. Since laser with single mode output is required 

where the width of the emission is of the order of few MHz, grating stabilized external cavity has 

been used as a wavelength tuning/selective element (Wieman and Hollberg, 1991; MacAdam et 

al., 1992). The grating element diffracts the collimated beam at an angleθ which satisfies the 

following grating equation, 

( )sin sin ,d i mθ λ− =                                                                                                         (1.44) 

where, i  is the angle of incidence, d the spacing between the grating lines and m an integer. 

                     (a)                                                                      (b) 

Figure 1.13:  Schematic of (a) Diffracted beams from the grating (b) ECDL 
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      The grating is rotated such that the first order diffracted beam is optically fed back and the 

zeroth order diffracted beam forms the output of the laser diode. Maximum coupling between the 

first order and zeroth order diffracted beams amplifies the selective frequency that has been fed 

back into the laser diode causing the lasing action. Piezo element is used for finer adjustment.  

 

1.6.3 Saturation absorption spectroscopy 

 

A laser beam passing through Rb vapor cell gives rise to Doppler broadened profile which obeys 

the Maxwell-Boltzmann velocity distribution (Figure 1.14). Saturation absorption spectroscopy 

(SAS) is a technique that is used to eliminate strong Doppler background in-order to clearly 

resolve all the hyperfine peaks of the Rb atoms (Hänsch et al., 1971; Schawlow, 1982). The 

experimental set up is shown in Figure 1.15.   

 

 

Figure 1.14:  Photo-diode response of a laser beam passing through Rb vapor cell. 

 
 

 
 

Figure 1.15:   Experimental set-up used for saturation absorption spectroscopy, where ECDL:  

External Cavity Diode Laser, OI: Optical Isolator, A: Aperture, GP: Glass Plate 

M: Mirror, BS: Beam Splitter, A-B: Photodiode differential amplifier circuit. 
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       As shown in Figure 1.15, a weak probe beam and a strong pump beam are maximally 

overlapped and counter-propagated through the Rb vapor cell. The pump beam is beam dumped 

and only the probe absorption is studied by photodiode A. The intense pump beam will saturate 

the atoms to the excited state creating holes in the ground state, resulting in a reduction in the 

probe absorption. This gives rise to dips known as the ‘lamb dips’ in a Doppler broadened 

background. In order to remove the Doppler background, the absorption of a reference beam is 

recorded by photodiode B (Figure 1.15). The A-B photodiode differential amplifier circuit 

shown in Figure 1.16, was constructed with the aid of Atomic and Optical Physics lab at Indian 

Institute of Science, Bangalore for the photodiode detection of Rb spectra. The differential 

amplifier circuit subtracts the signal from the two photodiodes giving Doppler free hyperfine Rb 

peaks (Figure 1.17). 

   

 

 

Figure 1.16:  Illustrates the schematics of the A-B photodiode differential amplifier circuit 
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Figure 1.17:  The Doppler free saturation absorption peaks for (a) Rb85(Fg=2→Fe′) (b) 

Rb
87

(Fg=1→Fe′) (c) Rb
87

(Fg=2→Fe′) and (d) Rb
85

(Fg=3→Fe′). 

 

1.7 Laguerre Gaussian (LG) beam 

 

In general, lasers generate modes known as the transverse modes denoted by TEMmn , where m 

and n refers to the number of intensity minima in the direction of the electric field and magnetic 

field oscillations respectively (Rigrod, 1963). The Gaussian mode ( 00TEM ) is the simplest and 

desired mode produced by a laser source. The Laguerre Gaussian mode is represented byTEM
lp

, 

where p denotes the radial mode index and l known as the azimuthal mode index represents the 

number of π2 phase cycles around the mode circumference (Allen et al., 1992; Arlt and 

Dholakia, 2001). The beam profile of the 
0TEMl
mode is annulus (Rigrod, 1963). To obtain the 

Gaussian and the LG modes let us consider the wave equation  

2
2

2 2

1
0,

E
E

c t

∂
∇ − =

∂
                                                                                                                                    (1.45) 
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where E is the associated field amplitude.  The trial solution for the field amplitude is of the 

form 

( , , , ) ( , , ) .i tE x y z t x y z e ωε −=                                                                                                                 (1.46) 

Incorporating the trial solution in (1.45) we get, 

( )2 2 0.k ε∇ + =                                                                                                                                            (1.47) 

      k is the wave vector and the elliptic partial differential equation given by (1.47) is known as 

the Helmholtz equation. It is solved in the paraxial approximation (small angle approximation) 

where it is assumed that there is no component of the field along its axis 

sin ;  tan   &  cos 1θ θ θ θ θ≈ ≈ ≈ (Goodman, 1968). The Gaussian and the LG modes can be 

obtained as a solution to the Helmholtz equation in the Cartesian and cylindrical coordinate 

systems respectively. The field amplitudes for both the modes is given by (Marcuse, 1982; Allen 

et al., 1996; Power et al., 1995) 

,

,

( , , ) Hermite polynomial Gaussian envelope

( , , ) Laguerre polynomial Gaussian envelope .

HG

m n

LG il

l p

E x y z

E r z e
φφ

∝ ×

∝ × ×
                                  (1.48) 

The Hermite ( )( )
n

H x and the Laguerre polynomial ( )( )
n

L x are given by (Weber and Arfken, 

2005) 

( )

2 2

( ) ( 1) ,

( ) .
 !

n
n x x

n n

x n
n x

n n

d
H x e e

dx

e d
L x x e

n dx

−

−

= −

=
                                                                                                                   (1.49) 

On substituting (1.49) in (1.48) we have, 

2 2

, , 2

2 2
1

2 2
( , , ) ( , , ) exp

( ) ( ) ( )

                      exp exp ( 1) tan  . ,
2

HG HG

m n m n m n

ikz

R

x y x y
E x y z C x y z H H

w z w z w z

x y z
ik i m n e c c

R z

−

    +
= −         

     

   +
× + + −   

    

             (1.50) 
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where, , ( , , )HG

m nC x y z is normalizing constant. The Rayleigh length, Rz  is defined as 

2
 

.o
R

w
z

π

λ
=

                                                                                                                            
(1.51) 

      Here ( )w z represents the beam waist for a beam width of ow  and is given by (Allen et al., 

1996),  

( )
2

( ) 1 /  for .
o R o R

w z w z z w z z= + ≈ <<
                                                                    

(1.52) 

      The field amplitude with the LG beam can be given in terms of the field amplitude ( )
klp

Rε
�

 

and phase factor ( )
klp

RΘ
�

as follows (Allen et al., 1996; Power et al., 1995), 

, ( , , ) ( )exp ( ) . ,
LG

l p klp klpE r z R i R c cφ ε  = Θ − 
� �

                                                                              (1.53) 

where, c.c denotes the complex conjugate of the first term in the R.H.S of (1.53). The associated 

mode amplitude and phase factor is defined as (Allen et al., 1996; Power et al., 1995), 

( )

2 2

00

1/2 2 2
2

2

2
1

2 2

2 2
( )   exp

( ) ( ) ( )
1

( ) (2 1) tan ,
2

l

lk
klp p

R

klp

RR

r r r
R L

w z w z w zz

z

kr z z
R p l kz l

zz z

ε
ε

φ−

    
=            

+ 
 

 
Θ = + + + + + 

+  

�

�
                                               (1.54) 

On substituting (1.54) in (1.53), we have 

( )

[ ] [ ]

2 2 2

00
, 1/2 2 2 2 22

2

1

2 2
( , , )   exp exp

( ) ( ) ( ) 2
1

                   exp (2 1) tan exp exp . .

l

lLG k
l p p

R

R

R

r r r ikr z
E r z L

w z w z w z z zz

z

z
i p l ikz il c c

z

ε
φ

φ−

     
 =        +        + 

 

  
× + + −  

  

                                                              

                                                                                                                                                  (1.55)       
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      From (1.55) we can see that the LG beam has a non-vanishing azimuthal phase dependence 

resulting in a doughnut shaped intensity distribution (Friese et al., 1996).  

 

1.8 Generation of LG beam 

 

The simplest LG beam can be represented as 

[ ] [ ]1 0( , , ) exp exp .zE E r z E ik z ilϕ φ= = −                                                                      (1.56) 

A plane wave propagating obliquely to the z axis is given by 

[ ]2 exp .x zE ik x ik z= − −                                                                                                      (1.57) 

The intensities associated with both the beams are,  

{ }{ }

2

1 1 1 0

2 2 2

( , , ) ( , , ) ,

1.x z x zik x ik z ik x ik z

I E E E r z E r z E

I E E e e

φ φ∗ ∗

∗
− − − −∗

= = =

= = =
                                                                        (1.58) 

Sum of the amplitude function is given by 

( )1 2 2Re corelation function .I I I= + +                                                                        (1.59)                          

      The correlation function is given by
1 2 1 22 Re( ) 2 ReI I E E

∗= . Assuming that the recording 

device is placed at z = 0, we have, 

( )1 2 02 cos .
x

I I I E l k xφ= + + −                                                                                       (1.60) 

      The Fourier transform of the interference pattern of a plane wave with a LG beam gives the 

transmittance function denoted by ( ) ( ), exp , .T r i H rφ δ φ=     Here δ is the amplitude of the 

phase modulation. ( ),H r φ  is given by (He et al., 1995; Arlt et al., 1998) 

( )
1 2

, mod cos ,2 ,
2

H r l
π

φ φ φ π
π

 
= − 

Λ 
                                                                      (1.61)                          

where, Λ is the fringe spacing and mod( , ) int( / )a b a b a b= −       



 

 

29

      (1.61) was generated for the desired |l| value ( )0

l

p
LG =

 [Figure 1.18 (a)] (He et al., 1995; Arlt 

et al., 1998) and the resulting pattern was printed and a negative (6 mm × 6 mm) was produced 

with a high resolution black and white photograph. This pattern is known as the computer 

generated hologram (CGH) given in Figure 1.18 (a). When a Gaussian beam passes through this 

CGH, it acts as a diffraction grating and LG beams with 1l = +  and 1l = −  are produced on either 

side of the Gaussian beam as shown in Figure 1.18 (b). 

   

                                          

                                              (a)                                                        (b) 
 

Figure 1.18: (a) CGH to generate LG beam with |l|=1 (b) Picture of the generated LG beam. 
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CHAPTER 2 

 

Hanle Electromagnetically Induced Transparency and Absorption 

Resonances with a Laguerre Gaussian beam 

                                          

        

2.1 Introduction     

 

In this chapter we computationally and experimentally investigate the influence of LG beam 

profile on the linewidth of the Hanle EIA/EIT resonances. It is seen that the LG field brings 

about a significant narrowing in the line shape of the Hanle resonance and ground-state Zeeman 

coherence in comparison to a Gaussian beam. We have shown that this narrowing arises due to 

the non-zero azimuthal mode index of the LG field which induces long lived Zeeman 

coherences.  

 

      The influence of the LG beam on the Zeeman coherence was confirmed with two-beam 

Hanle measurements where the Hanle profile was measured with a Gaussian beam in the 

presence of the LG beam. 

 

      In further support of our conclusions, the Hanle EIA resonance was measured with a ring-

shaped beam which is essentially a doughnut shaped beam with zero OAM and we have 

demonstrated that it is indeed the OAM associated with the LG beam which plays a crucial role 

in influencing the lifetime of Zeeman coherences. 

     

2.2 Theoretical model 

 

The field amplitude
LG

E associated with the LG mode is defined in (1.55) of Section 1.7. 

Ignoring the z dependence in (1.55), in the region z << Rayleigh length ‘zR’ (Allen et al., 1996), 

LG
E   reduces to 
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( )
2

2
exp exp . ,

l

o

LG LG

o o

r r
E E il c c

w w
φ

   
= − −   

   
                                                   (2.1)  

where, ( )exp ilφ−  is the phase factor and its coefficient represents the reduced mode amplitude 

of the electric field. The beam width is given by
o

w . 

 

      To study the effect of the LG field on the Hanle line shape, the transition Jg =1 → Je =0  

(Figure 2.1) was chosen, where Jg and Je represents the total angular momentum quantum 

number of the ground and excited states respectively. The ground and excited state sublevels for 

the atomic system are described by
i

g and
i

e respectively.  This system produces a well-known 

Hanle EIT (Renzoni et al., 1997). We consider a σ-polarized probe beam ( )    / 2σ σ+ −+  which 

accesses transitions satisfying the selection rule 1.
j

m∆ = ±   

 

 
 

Figure 2.1:  Atomic level configuration for the transition Jg =1 → Je =0. 

 

The ground and excited state sublevels can be expressed in column vectors 

1 0 0 0

0 1 0 0
;   ;   ;   

0 0 1 0

0 0 0 1

a b c d

       
       
       = = = =
       
       
       
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      The total Hamiltonian H of the system is given by the sum of the unperturbed Hamiltonian 

o
H , the atom-field interaction Hamiltonian I

H and the magnetic interaction energy 
B

H ,  

o I BH H H H= + +                                                                                                                (2.2) 

g e   
i io i i i i

i i

H g g e eω ω= +∑ ∑� �                                                                       (2.3) 

{ }
0

    
i iB L g i i e i i

i

H m g g m e eω
≠

= +∑
                                                                    

(2.4) 

0 0 0 0 0 0

0 0 0 0 0 0 0
 ;   

0 0 0 0 0 0

0 0 0 0 0 0 0

a L

b

o B

c L

d

H H

ω ω

ω

ω ω

ω

−   
   
   = =
   +
   

  

�
 

( ) ( ){ }
,

   . ,I ij ij

i j
i j

H i j d E d E h c
σ σ+ −

≠

= + +∑                                                                 (2.5) 

where, h.c is the Hermitian conjugate of the first term in (2.5). As discussed in Section 1.5.3, the 

expression for the Larmor frequency 
L

ω  is given by (1.39).  

 

      The magnetic field direction was chosen perpendicular to both the optical field propagation 

and polarization directions. The quantization axis was chosen along the direction of magnetic 

field. The electric field vector associated with the probe beam propagating along the z-direction 

and polarized in the x-direction is given by 

 

( ) ˆcos  ,
o pr x

E E t eω=
�

                                                                                                           (2.6)  

 

where, prω is the frequency associated with the incident probe beam. For a Gaussian beam, oE is 

taken as a constant and for a LG beam, oE  is replaced by LGE  (2.1). According to Wigner-Eckart 

theorem, the dipole matrix element, dij can be expressed as the product of the reduced matrix 

element and the Clebsch-Gordan (CG) coefficient (Bransden and Joachain, 2004) 
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     ;  1  .ij e e g g e e g gd e J r J J m q J mα α= −                                                           (2.7) 

 

The CG coefficients is related to the 3-j symbol by the following relation 

 

1 1
  ;  1    ( 1) 2 1 .e g e gJ m

e e g g g

e g

J J
J m q J m J

m q m

− +  
= − +  

− 
                                (2.8) 

 

      The term in the parenthesis represents the 3-j symbol of rank 1. On substituting (2.8) in (2.7), 

we get, 

 

( )1
    ( 1) 2 1 3 ,e gJ m

ij e e g g g eg
d e J r J J jα α

− +
= − +                                                 (2.9) 

 

where, the 3-j symbol can be represented by simpler notation, ( )
1

3 .
e g

eg
e g

J J
j

m q m

 
= 

− 
 

 

The matrix elements, 
1d±  defined as 1 0 1  d e e r g± ±=   can be expressed as (Sobelman, 1992) 

 

1       e e g gJ m d J m J d Jα α α α+
′ ′ ′ ∝ , for 

, 0 ; ,  1
,

;

e g

e g

J J m J J m

α α α α

′ ′= = = =


′= =

∓

 

                                                                                                                                                (2.10a) 

1       g g e eJ m d J m J d Jα α α α−
′ ′ ′ ∝ , for 

, 1 ; ,  0
.

;

g e

g e

J J m J J m

α α α α

′ ′= = ± = =


′= =
 

                                                                                                                                                (2.10b) 
 

      By invoking the relation between reduced matrix elements with different ordering of states, it 

can be shown that (Sobelman, 1992) 

   e e g gJ d Jα α =
*

( 1)   .e gJ J

g g e eJ d Jα α
−

−
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Hence for the atomic system Jg =1 → Je =0, 1 1d d+ −= −  

The Rabi frequencies associated with the Gaussian mode is taken as  

 ,
ij o

o

d E
Ω =

�
                                                                                                                        (2.11) 

 

And the Rabi frequency associated with the LG mode is taken as 

 

( )
2

2
 exp exp ,

l

ij LG o

LG LG

o o

d E r r
il

w w
φ

   
Ω = = Ω − −   

   �
                                               (2.12) 

where,
 

 

o

ij LGo

LG

d E
Ω =

�  

The atom field interaction Hamiltonian for the atomic system Jg =1→ Je =0 is given by 

( )   cosI prH d a a d d c c d tω= + − − Ω�  

( )

( )
( ) ( )

0 0 0

0 0 0 0
.

0 0 02

0 0

pr pr

pr pr
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i t i t

i t i tI
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e e
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e e
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 Ω +
 
 
 =
 −Ω +
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 Ω + −Ω +
 

�

     
(2.13) 

The density matrix ρ is given by 

1 1 1 0 1 1 1 0

0 1 0 0 0 1 0 0

1 1 1 0 1 1 1 0

0 1 0 0 0 1 0 0

.

g g g g g g g eaa ab ac ad

g g g g g g g eba bb bc bd

g g g g g g g eca cb cc cd
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ρ ρ ρ ρρ ρ ρ ρ
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  
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    
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      As discussed in Section 1.3, the oscillatory terms in the atom interaction Hamiltonian can be 

removed by making the following slow variable transformations 

1 0 1 0 1 0 0 1

1 0 1 0 1 0 0 1

1 0 1 0 1 0 1 0

0 0 0 0 1 1 1 1

1 1 1 1 1 1 1 1 0 0 0 0

; ;

; ;
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; ;

; ; ;
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ρ ρ ρ ρ ρ ρ ρ

+ ∗

− − − −

+ ∗

+ + + +

+ −

− − + +

− + − +

− − − − + + + +

= =

= =

= =

= =

= = =

� � �

� � �

� �

� �

� � � �
0 0 0 0.e e e e

ρ=

                             (2.14)  

 

Incorporating (2.14) in (2.13), 
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(2.15) 

 

The exponential terms, 
2 pri t

e
ω±

are basically off-resonant terms rotating with such a large 

frequency that its effect can be neglected. Hence these rapidly oscillating terms can be removed 

by invoking the rotating wave approximation (RWA) (Loudon, 1983). The total Hamiltonian of 

the system after making RWA 

0 0

0 0 0
.

0 02

0

a L

b

c L
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ω ω

ω
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− Ω 
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                                                                  (2.16) 

 

The time evolution of ρ is given by the Liouville equation (Scully and Zubairy, 1997)  

{ }1
,  ,  

2

d i
H R

dt
γ

ρ
ρ ρ Γ
 = − + Λ + Λ 

� � ��
�

                                                                         (2.17) 
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      The first and the second term on the right hand side of (2.17) represent the commutation and 

anti-commutation operations respectively. R� is the relaxation operator comprising of the 

relaxation terms Γ  and γ . Where, Γ  represents the spontaneous decay rate of the excited state 

and the decoherence rate γ  (also known as transit relaxation rate or transit effect) is given by the 

time the atoms stay in the width of the laser beam (Renzoni and Arimondo, 1998; Patnaik et al., 

2007). ΓΛ  and γΛ denotes the re-population matrix of the ground state due to the relaxation 

terms Γ  and γ  respectively. 

0 0 0

0 0 0
.

0 0 0

0 0 0

R

γ

γ

γ

γ

 
 
 =
 
 

+ Γ 

�
                                                                                                                        (2.18) 

              

 

                                                 
                                             (i)                                                           (ii) 

Figure 2.2:   Atomic level configuration for the transition Jg =1 → Je =0, highlighting the re-

population of the ground states due to (i) Γ  and (ii) γ . 

 

The repopulation matrices are given by 

 

0 0 0

0 0 0

0 0 0

1/ 3 0 0 0 / 3 0 0 0

0 1/ 3 0 0 0 / 3 0 0
; ,   

0 0 1/ 3 0 0 0 / 3 0

0 0 0 0 0 0 0 0

e e

e e

e e
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b

b
γ

ρ γ

ρ γ

ρ γΓ

Γ   
   

Γ   Λ = Λ =
   Γ
   
   

                                                                                                                             

   

 (2.19) 

where, 0b , the branching ratio component of the transition controls the transfer of population 

channel.  
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      We obtain 16 coupled first-order differential equations called as the optical Bloch equations 

(OBE) for the atomic system Jg =1 → Je =0 due to the LG beam.  

A
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                            (2.20c)        

      

      (2.20a), (2.20b) and (2.20c) represent OBE for the associated atomic population, optical 

coherences and Zeeman coherences respectively. These OBE are numerically solved (Rochester 

(2008); Malakyan et al., 2004) under steady-state conditions by setting the right hand side of 

(2.20) to zero. The steady state probe absorption, α  for the atomic system Jg =1 → Je =0 comes 

out to be (Boyd, 2003) 

0 1 0 1
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where, oν  is the frequency difference between the ground and the excited states in the absence of 

the magnetic field and N is the density of atoms. 

Since, ( ) ( ) ( )
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3 3 3

3
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on generalizing the steady-state probe absorption, we have,  
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                                                                             (2.21) 

 

      For a Gaussian beam, (2.21) is used to compute the absorption with the Rabi frequency 

( )oΩ = Ω treated as a constant. 

 

      To compute the probe absorption for the LG beam, Ω  in (2.21) is replaced by LGΩ (with 

o

LG
Ω treated as a constant) and a double integration carried out over parameters r  and φ  

(ignoring the z dependence as in (2.1)),  
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2.3 Computational results 

The calculated absorption of the incident optical field as a function of Larmor frequency (the 

Hanle profile) for Gaussian and LG beams is shown in Figure 2.3. The azimuthal mode index    

associated with the LG beam is taken as |l| =1 with / 20, / 1,oγΓ = Ω Γ = / 1,o

LGΩ Γ =  

0,pr∆ = 0 1b = and ( ) 3mm.ow z w= =  

 

      It can be seen from Figure 2.3 that the Hanle EIT profile due to the LG beam is significantly 

narrower than the one that is obtained with the Gaussian beam. The computed Hanle profile 

linewidths for Gaussian and LG beams are 0.363 MHz and 0.131 MHz respectively. The 

percentage narrowing observed in linewidth defined as .. .
%

.

G L G

G

LW LW

LW

 −
 
 

was found to be ≈ 

64%.        

 
       

                                
 
 

Figure 2.3:  Calculated Hanle resonance for Jg =1 → Je =0 with G and LG field using 

/ 20, / 1,oγΓ = Ω Γ = / 1,o

LGΩ Γ = 0,pr∆ = 0 1b = and ( ) 3mmow z w= =  for |l| =1.  

 

     The ground state Zeeman coherence, 1 1g gρ − +  − responsible for the Hanle EIT resonance 

(McLeant et al., 1985) − computed by integrating over the parameters r  and φ  also exhibits a 

similar narrowing as shown in Figure 2.4. 
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Figure 2.4:  Normalized Ground state Zeeman coherence created by Gaussian and LG fields.      

Parameters are same as those used in Figure 2.3.  See text for details 
 
 

      The source of the narrowing in the computation originates in the presence of the spatially 

dependent Rabi frequency (2.12) in the interaction Hamiltonian (2.4) and in the Liouville 

equation (2.17). To understand the origin of this narrowing, we recomputed the probe absorption 

and Zeeman coherence with
LG

o il

LG e
ϕ−Ω ≈ Ω , ignoring the radial dependence. It is seen from 

Figure 2.5(a) that the narrowing is absent. Alternatively if the phase factor is ignored, with  

( ) ( ) ( )2 2/ exp / exp ,
lo

LG LG o or w r w ilφΩ ≈ Ω − −  the same narrowing is observed in the Hanle 

profile [Figure 2.5(b)] and the Zeeman coherence. This suggests that the azimuthal mode index 

(l) associated with the LG beam which features in LGΩ brings about the observed narrowing.   
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                               (a)                                                              (b) 

Figure 2.5:  Probe absorption for Jg =1 → Je =0 due to Gaussian and LG beams. In (a) the radial                   

          dependence of LGΩ has been ignored and in (b) the phase factor in LGΩ  has been                      

          ignored. Other parameters are same as those used in Figure 2.3. See text for details. 

 

      The Hanle signal linewidth is determined by the relaxation rate of ground or excited state 

Zeeman coherences (Renzoni et al., 2001). Therefore a narrow Hanle signal suggests that an 

optical field with non-zero orbital angular momentum ( l� ) promotes long-lived Zeeman 

coherences.  

      Further support for this possibility is found when the Hanle profile or transit effect limited 

resonance with the LG field was computed for different azimuthal mode indices |l|= 1, 2 and 3 

(Figure 2.6). Kotlyar et al. (2006) have shown that the LG beam waist increases with increase in 

l. Hence, values of 3 mm, 4 mm and 5 mm were chosen as the beam waist for the LG field with 

azimuthal mode index |l|=1, 2 and 3 to represent this feature. 
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Figure 2.6:  Probe absorption with LG field for azimuthal mode indices, |l|= 1, 2 and 3 with  

o
w = 3 mm, 4 mm and 5 mm respectively. Plotting style and other parameters are   

same as those used in Figure 2.3. 

 

  
 

Figure 2.7:  Linewidth of the computed Hanle EIT profile for LG field as a function of OAM 

associated with it. 

 

      The EIT width due to LG beam with |l|= 1, 2 and 3 is shown in the Figure 2.7. The extent of 

narrowing between the computed linewidths due to |l|=2 and 3 is lesser than that for |l|=1 and 2 

(Figure 2.7).  A similar observation is made in the measured Hanle EIA profile, which will be 

discussed in the next section. 
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2.4 Experimental details and results 

 

An experimental study of the Hanle profile was carried out with Gaussian and LG fields to verify 

the computational results that have been discussed in the previous section. Hanle measurements 

were obtained with Rb vapor with an ECDL locked to the Fg =2→Fe′ =3 transition of Rb
87

. This 

transition gives rise to an EIA and has been studied by several groups (Dancheva et al., 2000; 

Renzoni et al., 2001; Dimitrijević et al., 2008). The LG beam was created using a computer 

generated hologram (CGH) (He et al., 1995; Arlt et al., 1998).  
 

 

      The beam with azimuthal mode index |l|= 1 was used as the probe beam. The transmission of 

the probe beam was measured as a function of magnetic field scanned perpendicular to the 

direction of the probe beam along the x-axis. The probe beam was polarized along the y-axis 

(Figure 2.8). Rubidium (Rb) vapor cell with a natural mixture of the Rb isotopes (Rb
87

~28% and 

Rb
85

~ 72%) was placed between a pair of Helmholtz coils to null the fields in the other two 

directions to ~ 0.3 mG. The magnetic field measurements and the field scan calibrations were 

carried out by using a flux gate magnetometer. Measurements were also made with a Gaussian 

beam of the same intensity.  

 
 

Figure 2.8:  Experimental set-up used for measuring the Hanle profile with a LG beam, where 

ECDL:  External Cavity Diode Laser, SAS: Saturation Absorption Spectroscopy 

set-up, OI: Optical Isolator, A: Aperture, P: Polarizer, CGH: Computer Generated 

Hologram, PD: Photo Detector, HWP: Half Wave Plate, QWP: quarter wave plate. 
 
 

 

 

      The Hanle profile obtained with Gaussian and LG beams is shown in Figure 2.9. The LG 

profile is distinctly narrower than the Gaussian beam profile confirming our computational 

results. The measured linewidths of the Hanle EIA profile for Gaussian and LG beams are 0.343 

Gauss and 0.161 Gauss respectively. The percentage of narrowing observed in this experiment 

was found to be ≈ 53% (comparable to the computation value of ≈ 64%). 
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Figure 2.9:  Measured Hanle EIA profiles for Gaussian and LG beams locked to the Fg =2→Fe′  
=3 transition of Rb

87
. Both the beams were maintained at the same intensity.    

 
 

      Hanle profiles obtained for different intensities of Gaussian and LG probe fields are shown in 

Figure 2.10. The combination of a half-wave plate and the polarizer placed right before the cell 

was used to vary the intensity of the beams from 849µW/cm
2
 to 2888µW/cm

2
. The linewidth of 

the measured Hanle EIA profile due to the Gaussian and LG beams as a function of their 

intensity is shown in Figure 2.11(a).  

     
 

                                 (a)                                                                   (b) 

Figure 2.10:   Measured Hanle EIA profiles by locking the laser to the transition Rb
87

(Fg =2→Fe′  
=3) for different intensities in the presence of circularly polarized (a) Gaussian 

and (b) LG beam.      
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                                    (a)                                                                  (b) 

Figure 2.11:  The study of (a) the linewidth of the measured Hanle EIA profile as a function of 

intensity due to circularly polarized Gaussian and LG beam (b) the linewidth of 

the computed Zeeman coherence as a function of the square of the Rabi 

frequency. 

 

      It can be seen that the width of the measured Hanle EIA profile due to the LG field is 

narrower in comparison to a Gaussian beam at all values of intensity, the extent of narrowing 

induced by the LG field increasing with increase in intensity [Figure 2.11 (a)]. A similar 

behavior is observed when the linewidth of the real part of ground state Zeeman coherences 

( )2m∆ = ±  due to Gaussian and LG beams are plotted as a function of square of the Rabi 

frequency corresponding to the intensity values that have been used in the experiment [Figure 

2.11 (b)].  

 

      The behavior of the normalized Zeeman coherence and ground state population as a function 

of the Rabi frequency (Figure 2.12) determines the nonlinear response of the atomic medium 

(Pustelny, 2007). The low Rabi frequency behavior ( 0.02 MHz
pr

Ω ≤ ) of the normalized 

Zeeman coherence and ground state population is less nonlinear for LG beam when compared to 

the Gaussian beam for the atomic system Jg =1 → Je =0 (shown in the inset in Figures 2.12(a) 

and (b) respectively). 
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                                   (a)                                                                   (b) 

Figure 2.12:  The study of (a) Normalized ground state Zeeman coherence and (b) Normalized 

ground state population as a function of the probe Rabi frequency due to both 

Gaussian and LG beams. The plot for very low Rabi frequency is shown in the 

inset. 
 

            To verify the computational result (Figure 2.7), the Hanle EIA resonance due to the 

circularly polarized LG beam with |l| = 1, 2 and 3 was measured [Figure 2.13 (a)] and the line 

width of the measured Hanle EIA profile for LG field was plotted as a function of OAM 

associated with it as shown in Figure 2.13 (b). The EIA linewidth due to the LG beam is 

mentioned in the Figure 2.13(b). As observed in the computation, the extent of narrowing 

between the measured linewidths due to |l|=2 and 3 is lesser than that for |l|=1 and 2.  

 

          
    

                                (a)                                                                      (b) 

Figure 2.13:  (a) Measured Hanle EIA profile due to LG beam with |l|= 1, 2 and 3 (b) Linewidth 

of the measured Hanle EIA profile for LG field as a function of OAM associated 

with it. 
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      The influence of the LG beam on the Zeeman coherence was confirmed with a two-beam 

Hanle measurement. The experimental set-up used is shown in Figure 2.14. The Hanle profile 

was measured with a Gaussian probe beam in the presence of a LG beam (|l|= 1). The circularly 

polarized probe and the coupling beams were co-propagated through the Rb vapor cell. The 

Gaussian beam was maintained at a fixed intensity of 1132 µW/cm
2
. The LG beam was blocked 

after it passed through the Rb cell. 

 
 

Figure 2.14:  Experimental set-up used for the two-beam Hanle measurement. The key is the 

same as mentioned in Figure 2.8. 
             

 

      

                                 (a)                                                                  (b) 

Figure 2.15:  Measured Hanle EIA profile for Gaussian beam (1132 µW/cm
2
) locked to the Fg 

=2→Fe′ =3 transition of Rb87 with and without a coupling beam. The coupling 

beam is (a) Gaussian and (b) Laguerre Gaussian. Introduction of the LG beam 

lowers the linewidth of the Gaussian EIA Hanle profile from 0.313 Gauss to 0.262 

Gauss.   
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      From Figure 2.15(b), it can be seen that the LG beam, (intensity of ~28 µW/cm2), induces a 

noticeable narrowing of about 51 mG in the linewidth of the Hanle profile of the probe beam. No 

narrowing was observed when the LG beam is replaced with a Gaussian beam (l =0) [Figure 

2.15(a)]. The observed narrowing suggests that the presence of the LG beam enhances the 

lifetime of the Zeeman coherences probed by the Gaussian beam in further support of our 

computational analysis.  
 

 

      To further confirm that the observed narrowing is associated with spatial profile of the LG 

field, a comparative study was carried out with a ring-shaped (RS) beam which is essentially a 

doughnut shaped beam but with zero OAM.  RS beam was generated by using a circular mask 

(Hamid et al., 2006). The experimental set-up given in Figure 2.8 was used to measure the 

Hanle EIA resonances with a circularly polarized Gaussian, LG and RS beams (Figure 2.16). 

The beams were maintained at the same intensity.  

 

 

Figure 2.16: Measured Hanle EIA profiles for circularly polarized Gaussian, LG and ring- 

shaped beam locked to Fg =2→Fe′ transition of Rb
87

. 

       

      The measured linewidths were found to be 0.283 Gauss, 0.251 Gauss and 0.150 Gauss for the 

Gaussian, ring-shaped and LG beams respectively. It is clear that the resonances obtained with a 

Gaussian and ring-shaped beams have comparable widths while the LG beam produces a 
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distinctly narrower resonance. Since a ring-shaped beam with no OAM behaves similar to a 

Gaussian beam, it is clear that the OAM of the LG field plays a crucial role in influencing the 

Zeeman coherence lifetime. 

 

      Interesting inferences in support of our results could be made by comparing independent 

degenerate four-wave mixing experiments performed with a Gaussian beam by Lezama et al. 

(2000) and with a LG beam by Barreiro and Tabosa (2003). 
       

      Degenerate four-wave mixing (DFWM) is a phase sensitive non-linear process where the 

interaction depends upon the relative phases of all the beams and it yields Doppler free spectra 

(Lam and Abrams, 1982). Lezama et al. (2000), Barreiro and Tabosa, (2003) measured the 

DFWM spectra in a sample of cold atoms. In this case, backward FWM configuration was used 

where the counter-propagating forward (F) and the backward (B) beams (pump beams) with 

parallel linear polarization were maintained at the same frequency. The probe (P) beam making a 

small angle with respect to the forward beam was linearly polarized orthogonal to the pump 

beams. When the three beams ( PBF ⊥// ) interact with the non-linear medium, a phase 

conjugate (C) beam is generated due to the induced coherence grating between the pair of 

Zeeman sublevels in the ground and the excited states (Lezama et al., 2000; Barreiro and Tabosa, 

2003). All other experimental conditions being the same, the sub-natural FWM spectral 

linewidth obtained when Gaussian beam was used as the probe beam was found to be 

approximately 296 KHz
*
 higher than the 200 KHz linewidth obtained with a LG beam used as 

the incident probe beam (Barreiro and Tabosa, 2003). Since the four-wave mixing spectrum 

originates from a long lived Zeeman ground state coherence (Barreiro and Tabosa, 2003), the use 

of a LG beam is found to enhance the Zeeman coherence lifetime in agreement with our results.   

 

     Further support is obtained when experiments on the topological study of stored optical 

vortices are considered. The storage time of the optical vortex state is limited by the life time of 

ground state coherences (Phillips et al., 2001; Dutton and Ruostekoski, 2004). It was shown by 

Pugatch et al. (2007) that the LG mode (optical vortex) is topologically stable and could be 

stored in hot atomic vapor for 110 µs without diffusion.  In comparison, the corresponding 

                                                 

*

 Linewidth from (Lezama et al., 2000) was estimated by digitizing the reported data. 
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storage time for a Gaussian beam with a uniform phase and a dark center (zero OAM) was found 

to be only 10 µs. This confirms our conclusions that a non-zero azimuthal mode index is crucial 

to producing long-lived ground state coherences and hence enhanced storage times.  

 

      LG field induced narrowing of EIT/EIA profiles may have several important applications 

such as atomic clocks with higher precision, increased storage times/steeper dispersion in 

stopped light/slow light experiments. A brief insight into some of these applications is given in 

the third chapter. 

 

2.5 Conclusions 

 

In conclusion, the influence of a LG beam on the linewidth of electromagnetically induced Hanle 

EIT/EIA profiles has been studied. LG beam profile was seen to bring about a significant 

narrowing in the line shape of the Hanle resonance and ground state Zeeman coherence in 

comparison to a Gaussian beam. We have shown by computation and experiment that the 

azimuthal mode index of the LG field induces long-lived Zeeman coherences resulting in a 

significant narrowing of the Hanle EIT/EIA resonance.  

 

      A two-beam Hanle measurement, where the Hanle profile of the Gaussian beam was studied 

under the influence of the LG beam also confirms the observed behavior. 

 

      In further support of our conclusions, a comparative study of the Hanle EIA measurements 

were carried out with a ring-shaped beam which is essentially a doughnut shaped beam with zero 

OAM. This shows that the OAM associated with the LG beam which plays a crucial role in 

influencing the lifetime of the Zeeman coherences.   
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CHAPTER 3 

 

         Nonlinear magneto-optical rotation with a Laguerre Gaussian beam 

 

 

3.1 Introduction     

 

In the previous chapter we had studied the effect of the LG beam profile on the linewidth of the 

Hanle EIT/EIA resonances. It was shown that the azimuthal mode index associated with the LG 

beam brings about a significant narrowing in the line shape of the Hanle resonance in 

comparison to a Gaussian beam. In this chapter, we have investigated the role played by the LG 

field in coherent processes which do not depend on the transit relaxation time.  

      To study the dependence of the LG field induced narrowing on the polarization of the 

incident beam, a comparison was made between the transit effect limited polarization rotation 

signal in the Faraday (nonlinear Faraday signal) and the Voigt (nonlinear Voigt signal) geometry 

by locking the ECDL to the closed transition Rb
87

 Fg =2→Fe′ =3.   

      As mentioned in chapter 2, we were also interested in exploring other implications of the LG 

field influence. Therefore a Lambda system (described in Section 1.5.1) was taken and a detailed 

computational analysis was carried out to study EIT and reduced group velocity in the presence 

of the LG field. 

 

3.2 Nonlinear magneto-optical rotation 

 

3.2.1 Experimental details and results 

 

NMOR measurements were carried out with Gaussian and LG fields using the experimental set-

up as given in Figure 3.1. The probe beam was passed through a cylindrical paraffin coated Rb 

vapor cell (dimension: 8cm in diameter and 5cm long) with the ECDL locked to the Fg =2→Fe′ 
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=3 transition of Rb
87

. The paraffin coated cell was placed inside a three layered Mu metal shield 

(Co-Netic alloy) to null the magnetic field in the transverse directions  and the magnetic field 

was scanned along the direction of propagation of the beam (Faraday geometry) with the help of 

the solenoid (Figure 3.1). The balanced polarimetry arrangement [Figure 1.11 (b)] is used to 

carry out the NMOR measurements (Section 1.5.4). The rotation of the plane of polarization of 

the probe beam due to its interaction with the resonant medium is obtained by measuring the 

differential signal between the two photodiodes. A lock in amplifier was used to amplify the 

differential signal between the two PDs and the NMOR measurements were recorded on a 

cathode ray oscilloscope. 

 

 

 

Figure 3.1:  Experimental set-up used for measuring the NMOR signal with a LG beam, where 

PBS is a polarizing beam splitter. Balanced polarimetry arrangement is shown. Rest 

of the key is the same as used in Figure 2.8. 

 

      The two types of NMOR obtained with this experimental set-up are given in Figure 3.2.      

The linewidth of the wider resonance (NMOR-I) is limited by the transit effect (Figure 3.2). The 

relaxation time in this case is given by the time of flights of the atoms between the optical 

pumping and probing (the time the atom stays in the width of the laser beam). 

      The narrow resonance −NMOR-II (inset in Figure 3.2) is brought about by the creation and 

evolution of atomic polarization. Atomic polarization discussed in Section 1.5.3, refers to the 

polarization of the atoms due to optical pumping, precessing at a Larmor frequency of Lω in the 

presence of the magnetic field.  The linewidth in this case is determined by atomic depolarization 

rate, given by the time between the optical pumping and probing of the atoms after collisions 

with the cell walls and returning to the beam (Budker et al., 1998, Budker et al., 2002).  
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Figure 3.2:  NMOR-I (due to the transit effect) - wider resonance measured for LG beam, 

locked to the Fg =2→Fe′ =3 transition of Rb87. The measured NMOR-II signal due 

to the coherence effect- narrow resonance (encircled in the plot) is shown in the 

inset.   
 

       

      The time evolution of the polarized alkali atoms in the presence of the magnetic field is 

limited by (a) the spin exchange collision rate and (which will be discussed in detail in the next 

section) (b) the collisions of these atoms with the walls of the cell (Budker et al., 1998, Budker et 

al., 2000). Atoms are completely depolarized when colliding with the walls of an ordinary 

uncoated vapor cell. On the other hand, a paraffin coated (anti-relaxation) cell (Alexandrov et al., 

1996) enables the atoms to undergo many thousand collisions with its wall before depolarizing 

them. The spin destruction probability is significantly reduced by the paraffin coating when 

atoms collide with its surface as it contains no free electron spin. Moreover, it yields low 

adsorption energy in comparison to the bare glass surface thereby reducing the time spent by an 

adsorbed alkali atoms in its surface (Seltzer et al., 2010). Therefore paraffin coated cell increases 

decoherence time by preserving the atomic polarization on collisions with the cell walls, thus 

bringing about a narrower resonance. The smallest such observed linewidth for NMOR-II has 

been reported by Budker et al. (1998) corresponding to 1 µG. 

      It can be seen from Figure 3.3 that NMOR-I due to the LG beam profile is distinctly 

narrower than the one obtained with the Gaussian beam. The measured linewidths of the NMOR-
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I profile for Gaussian and LG beams with OAM, |l| = 1, 2 and 3 are 0.056 G, 0.033 G, 0.030 G 

and 0.027 G respectively (Figure 3.3). NMOR-I and NMOR-II measurements were carried out 

at the Atomic and Optical Physics lab at Indian Institute of Science, Bangalore. 

     

 
 

Figure 3.3:  Measured NMOR-I for Gaussian and LG fields with |l| = 1, 2 and 3 locked to the Fg 

=2→Fe′ =3 transition of Rb
87

.   
                

 
 

Figure 3.4: Measured NMOR-II resonance for Gaussian and LG fields with |l| = 1, 2 and 3 

locked to the Fg =2→Fe′ =3 transition of Rb
87

.   

      The width of NMOR-II for the Gaussian and LG beam profiles with OAM of |l|= 1, 2 and 3 

are 0.327 mG, 0.339 mG, 0.359 mG ad 0.389 mG respectively (Figure 3.4). The linewidth of the         
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NMOR-II that has been observed in the experiment (Figure 3.4) was found to have higher 

linewidths (of the order of 210− G) compared to the observations made by the Budker et al. 

(1998). This could be attributed to the presence of residual magnetic field in the order of milli-

Gauss in the Mu metal shield.   

      There is no significant change in the linewidths of NMOR-II between the Gaussian and LG 

beam profiles (Figure 3.4). Since the spin exchange collisions is the principal relaxation 

mechanism for the atomic polarization in paraffin coated cell, it can be concluded that the narrow 

resonance is not influenced by the spatial profile of the LG beam.  

 
3.2.2 Computational results 

 

To verify the experimental results that have been discussed previously, a comparison has been 

made between the contribution to the relaxation matrix ( ) ,R ρ  
� � due to both transit effect and the 

coherence effect (3.1). ( )R ρ� � comprises of the relaxation terms Γ  andγ . Where, Γ represents the 

spontaneous decay rate of the excited state and the decoherence rateγ , is given by either 

(Malakyan et al., 2004),   

 

(a) The time the atoms stay in the width of the laser beam (Renzoni and Arimondo, 1998; 

Patnaik et al., 2007) −NMOR-I or 

(b) Time between the optical pumping and probing of the atoms after collisions with the cell 

walls and returning to the beam; the effective lifetime in this case is equal to the time of 

the atomic round trip (Pustelny, 2007) −NMOR-II. 

 

      The Liouville equation given by (2.17) in Section 2.2 can be re-written after incorporating 

the relaxation mechanism due to the transit effect and the spin exchange collision. 

( ) ( ) ( )SETE
, ,

d i
H R R

dt

ρ
ρ ρ ρ ρ = + + +Λ 

� � � �� � � �
�

                                                                             (3.1)
 

where, ( )
TE

R ρ� �
 

is the relaxation operator due to the transit effect. H� represents the total 

Hamiltonian of the system after making the RWA and is given by (2.16). ( )ρΛ �  denotes the re-
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population matrix of the ground state due to the relaxation terms Γ and the transit relaxation time 

(2.19). 

      The third term in the RHS of (3.1) represents the collisional relaxation rate, i.e. the spin 

exchange relaxation rate (Harper, 1972; Corney, 1977). In the spin exchange relaxation process, 

the spin orientations of the colliding atoms flip but their total angular momentum is conserved 

and therefore the overall orientation of the colliding atoms must be preserved. The force 

responsible for this process is electrostatic in nature (Harper, 1972; Corney, 1977). The 

relaxation mechanism between two colliding atoms can be expressed as (Harper, 1972) 

( ) ( ) ( ) ( )A B A B .↑ + ↓ → ↓ + ↑                                                                                          (3.2) 

      The difference arising between the singlet and the triplet potential (3.4) can be attributed to 

the origin of the spin exchange interaction. The interaction potential as a function of the 

interatomic distance is given by (Harper, 1972) 

( ) ( ) ( )0 1. ,A BV r V r S S V r= +
� �

                                                                                              
(3.3)

 

where, 
A

S
�

and 
B

S
�

represents the electronic spin operators of A and B respectively and A BS S+ is 

conserved. ( )0V r and ( )1V r  are the interatomic potential due to the spin independent and spin 

dependent part respectively. The singlet and the triplet potentials are given by (Harper, 1972) 

( ) ( ) ( )

( ) ( ) ( )
0 1

0 1

3 / 4
.

1/ 4

s

t

V r V r V r

V r V r V r

= − 


= +                                                                                                 
(3.4) 

      Let us consider species of atoms A with density matrix 
Aρ  and number density 

AN  colliding 

with another species of atoms B with the corresponding density matrix Bρ and number 

density
BN .  The rate of change of density matrix

Aρ , is given by (Ressler et al., 1969; Harper, 

1972; Harper and Tam, 1977) 

( ) ( )SE

SE SE

I II

1 2
 ,  .

A

e

A A A B A

d iK
R S S

dt
ρ ρ ρ ρ ρ

τ τ
 = = − + ⋅
 

� �
� �

������� ���������                                          
(3.5) 
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      K gives the shift parameter which depends upon the singlet and the triplet potentials. 

SE1/τ represents the spin exchange relaxation rate and by standard result from the kinetic theory, 

it is given by (Ressler et al., 1969; Harper, 1972; Corney, 1977) 

SE SE rel ,
B

N vγ σ=          
                                                                                                         

 (3.6) 

where, relv is the average relative velocity. SEσ  is the effective spin exchange or mean 

depolarization cross section and for Rb atoms it is found to be 14 210 cm−≅ . (Ressler et al., 1969; 

Harper, 1972; Corney, 1977).
 

      The term II of (3.5) can be neglected by taking into consideration the dominant effect of the 

spin exchange collision (Ressler et al., 1969; Harper, 1972; Harper and Tam, 1977). The term I 

of (3.5) indicates that Aρ  relaxes to 
A

eρ at the rate SE1/τ immediately after having undergone spin 

exchange collision with atoms of species B. The density matrix Aρ and 
A

eρ can be written as 

(Harper, 1972; Harper and Tam, 1977)  

  A A A AA Sρ ζ= + ⋅
� �

                                                                                                                                        (3.7) 

( )1 4   
A

e

A B A
S Sρ ζ= + ⋅
� �

                                                                                                                       (3.8) 

where, 
Aζ and 

AA
�

are operators which affect only the nuclear spin of A. 

      On substituting the expression for Aρ and 
A

eρ  in (3.5) and neglecting the term II as discussed 

previously, we have 

( ) ( ) ( ) SE

SE

1
 1 4     

A A B A A A A

d
R S S A S

dt
ρ ρ ζ ζ

τ
 = = + ⋅ − + ⋅
 

� � � �
� �  

                          
(3.9) 

On simplifying, the mechanism of the spin exchange collisions reduces as 

( ) ( )SE  SE

SE

1
4  

A B A A
R R S A Sρ ζ

τ
= = − ⋅

� � �
� ��

                                                                  
(3.10) 

 Incorporating (3.10) in (3.1), the Liouville equation gets modified as 
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( ) ( ) ( ) ( ) TE

SE

1
, , 4  A B A A

d i
H r R S A S

dt

ρ
ρ φ ρ ζ ρ

τ

 
 = + + − ⋅ + Λ  

 

� � �� � �� � �
�

              (3.11) 

      As mentioned in the previous chapter, the azimuthal mode index of the LG field results in a 

spatially dependent Rabi frequency, LGΩ  given by (2.12). This in turn renders the total 

Hamiltonian of the system spatially dependent ( ),H H r φ = 
� � .  

      It can be seen from (3.7) and (3.8) that the density matrix element involved in the spin 

exchange mechanisms is independent of spatial coordinates. Therefore the spatially dependent 

Hamiltonian ( ),H r φ� can be decoupled from these density matrix elements and consequently,  

LGΩ  has no effect on spin exchange mechanism. As a result of which the OAM ‘l’ associated 

with LG beam has no influence on the NMOR-II resonance. On the other hand, in the case of the 

transit effect [second term of (3.11)], the density matrix is dependent on spatial coordinates (due 

to the nature of the transit relaxation) and therefore on ‘l’ in the presence of a LG field. This 

accounts for the observed narrowing induced by the LG field in the transit effect limited NMOR 

profile.  

       Therefore, it can be inferred that, unlike NMOR-I, the induced atomic coherence in the case 

of NMOR-II resonance persists even if the atom leaves the laser beam.  These results support our 

conclusion that the transit effect limited Hanle and NMOR resonances are strongly influenced by 

the OAM associated with the LG field. 

      The transit effect limited NMOR was computed for the atomic transition Jg =1→Je =0 

(Figure 2.1) due to the Gaussian and LG modes as shown in Figure 3.5. The azimuthal mode 

index associated with the LG beam is taken as |l| =1, 2 and 3 with / 1000,γΓ = 00, 1,
pr

b∆ = =   

/ ,  / 1,
o

o LG
Ω Γ Ω Γ = and ( ) 3mm, 4mm and 5mm

o
w z w= = for |l| =1, 2 and 3 respectively. 

      The computed linewidths for transit effect limited NMOR due to the Gaussian and LG beams 

with |l| = 1, 2 and 3 were found to be 0.031 MHz, 0.011 MHz, 0.007 MHz and 0.005 MHz 

respectively (Figure 3.5).  
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Figure 3.5:  Measured NMOR-II for Gaussian and LG fields with |l|=1, 2 and 3 locked to the Fg 

=2→Fe′=3 transition of Rb
87

, using / 1000,γΓ = 0,
pr

∆ = ,1/  ,1/ =ΓΩ=ΓΩ o

LGo   

0 1b = and ( ) 3mm,4mm and 5mmow z w= = for |l| =1, 2 and 3 respectively. 
 

      It can be seen that the NMOR-I profile with LG beam is significantly narrower than the one 

that is obtained due to the Gaussian beam, consistent with the experimental results discussed in 

the previous section. The computed linewidth of the LG NMOR-I profile was plotted as a 

function of the OAM associated with it (Figure 3.6).  As observed in the Hanle resonances 

[Figure 2.7 and 2.13], the extent of narrowing between the measured linewidths due to |l|=2 and 

3 is lesser than that for |l|=1 and 2.  

 

 
Figure 3.6:  Linewidth of the computed transit effect limited NMOR profile for LG field as a 

function of OAM |l| associated with it. 
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3.3 Nonlinear Faraday and Voigt signals 

 

3.3.1 Experimental details and results 

 

To verify if the narrowing induced by the LG field could be polarization dependent the 

polarization rotation signal due to the Gaussian and LG fields was studied in the Faraday 

geometry (nonlinear Faraday signal) and the Voigt geometry (nonlinear Voigt signal). The 

schematic of the experimental set-up that was used is shown in Figure 3.7. 

      In the nonlinear Faraday or NMOR measurements, the probe beam is sigma (σ ) polarized 

(the polarization oriented at an angle of 90
°
 with respect to the magnetic field B

�
) as shown in 

Figure 3.7(a). The interaction of the probe beam with the resonant medium results in the rotation 

of the plane of polarization of the σ  (σ + andσ − ) polarized beam which can be measured by 

using the balanced polarimetry arrangement (Section 1.5.4).                       

  

 Figure 3.7: Illustrates the schematic of the experimental set-up to measure the polarization 

rotation signal in (a) Faraday geometry and (b) Voigt geometry. 
 

     In the nonlinear Voigt signal measurement, the polarizer P1 in Figure 3.7 (b) is oriented at an 

angle of 45
°
 with respect to the magnetic field which is scanned perpendicular to the direction of 

the propagation of the beam (Drake et al., 1988). Hence in this geometry, the probe beam 

comprises of σ andπ polarizations and to enable the detection of the rotation in their plane of 
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polarization (σ and π ), the polarizer P2 is aligned crossed with respect to P1 [Figure 3.7 (b)].  

      In case of the Faraday rotation, only 2m∆ = ± coherences are created as the sigma polarized 

light drives the optical transition with selection rules 1m∆ = ±  (Drake et al., 1988) (Figure 3.8). 

On the other hand, in the Voigt rotation, since both the σ (selection rule 1±=∆m ) and π  

(selection rule 0m∆ = ) polarizations are involved, this results in the creation of 1±=∆m and 

2m∆ = ± (Drake et al., 1988; Nishina and Lax, 1969) (Figure 3.8). As mentioned in chapter 1 

(1.41), the Faraday rotation is proportional to the difference in the refractive indices associated 

with the left and the right circularly polarized beams respectively and the Voigt effect is 

proportional to the difference in the absorption of light polarized along and perpendicular to the 

direction of magnetic field (Nienhuis and Schuller, 1998; Schuller et al., 1991). The generalized 

expressions for the Faraday ( )Fϕ  and the Voigt rotation ( )Vϕ is given by 

{ }F D D
σ σ

ϕ + −∝ −                                                                                                                (3.12) 

( ){ },
V

A A Aπ σ σ
ϕ + −∝ − +                                                                                                   (3.13) 

where, A  and D  represents the absorption and dispersion for the particular polarization 

component respectively.  

 

Figure 3.8:  Illustrates the atomic level configuration Jg =1→Je =2 and the allowed transitions 

for (a) Faraday geometry and (b) Voigt geometry.  
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            The nonlinear Faraday and the Voigt rotation measurements were carried out to verify if 

the narrowing induced by the LG beam profile could be polarization dependent. Rb vapor cell 

was used and the ECDL was locked to the closed transition Rb
87

 Fg =2→Fe′ =3. The measured 

nonlinear Faraday and the Voigt signal due to Gaussian and LG beam (with OAM, |l|=1) 

maintained at an intensity of 1186 µW/cm
2
 is shown in Figure 3.9 and 3.10. 

 

 
 

Figure 3.9:   Measured nonlinear Faraday signal due to the Gaussian and LG fields (with OAM, 

|l|=1) locked to the Fg =2→Fe′ =3 transition of Rb
87

.   
 

             

 
 

Figure 3.10:   Measured nonlinear Voigt signal due to the Gaussian and LG fields (with OAM, 

|l|=1) locked to the Fg =2→Fe′ =3 transition of Rb
87

.   
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      The nonlinear Faraday signal due to LG beam is significantly narrower than the one obtained 

with the Gaussian beam with line-widths of 0.057 G and 0.037 G for Gaussian and LG fields 

respectively (Figure 3.9). The percentage of narrowing in the line-width of the nonlinear 

Faraday signal was found to be 35%.  

      The linewidth of the measured nonlinear Voigt signal due to the Gaussian and LG fields 

(with OAM, |l|=1) were found to be 0.200 G and 0.112 G respectively (Figure 3.10). Again, it 

can be seen that LG field brings about a significant narrowing in the nonlinear Voigt signal in 

comparison to the Gaussian beam. The percentage of narrowing in this case was found to be 

45%.  

 

3.3.2 Computational results and discussions 

 

      To explain the observed behavior reported in the previous section, the nonlinear Faraday and 

Voigt signal has been computed for a simple two level atomic system  Jg =1→Je =0 (Figure 2.1) 

for Gaussian and LG beams. The expressions for the Faraday and Voigt rotation for this atomic 

system is given by (Nienhuis and Schuller, 1998; Schuller et al., 1991; Malakyan et al., 2004) 

{ }
0 1 0 1

2

  Re[ ] Re[ ]
3

o
F e e g g e g e gJ d J

c

πν
ϕ α α ρ ρ

− +
= −

Ω
                                              (3.14) 

( ){ }
0 0 0 1 0 1

2

  Im[ ] Im[ ] Im[ ] ,
3

o
V e e g g e g e g e gJ d J

c

πν
ϕ α α ρ ρ ρ

− +
= − +

Ω
                     (3.15) 

where, the angled bracket represents the reduced matrix element defined in (2.7), oν is the 

frequency difference between the ground and the excited states in the absence of the magnetic 

field and Ω  denotes the Rabi frequency and for the Gaussian and LG mode it is defined in (2.11) 

and (2.12) respectively. 

      In the computational analysis, the OAM associated with the LG field is taken as |l|=1, using 

3mmow = , / 400,γΓ = 0,pr∆ = / 0.05,o

LGΩ Γ = / 0.05oΩ Γ = and
0 1b = . The computed nonlinear 

Faraday and Voigt signals are shown in Figure 3.11. The LG beam profile brings about a 

significant narrowing in the computed nonlinear Faraday and Voigt rotation signal (Figure 3.11), 

the narrowing found to be more prominent in the latter case (by 11%), consistent with the 
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experimental results (by 9%) that have been observed in the previous section. The percentage of 

narrowing in the linewidth of the polarization rotation signal induced by the LG beam with 

respect to the Gaussian beam in the Faraday and Voigt geometry for the atomic system Jg =1→Je 

=0 has been summarized in Table 3.1.   

 

      
 

                                (a)                                                                   (b) 

Figure 3.11:   Computed polarization rotation signal for (a) Faraday and (b) Voigt geometry due 

to Gaussian and LG field for the transition Jg=1→Je=0, using ,0=∆ pr  10 =b  

,400/ =Γ γ 05.0/  ,05.0/ =ΓΩ=ΓΩ o

LGo
and ( ) 3mmow z w= =

 
for |l|=1.   

 
Table 3.1:  Gives the linewidth of the polarization rotation signal for different configurations due 

to the Gaussian and the LG beams to illustrate the percentage of narrowing in each 

case for the atomic system Jg =1→Je =0. 
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     To probe this behavior further, nonlinear Faraday and Voigt signals were analyzed for the 

atomic transition Jg =1→Je =2 (Figure 3.8) as it represents an EIA system (Lezama et al., 1999; 

Renzoni et al., 2001). The repopulation matrix ΓΛ for this atomic system is rewritten such that 

the individual contributions to the transfer of coherence (TOC) (Section 1.5.2) channel from the 

excited state coherences can be separated out in the computation (Ram et al., 2009). The 

repopulation matrix can be expressed as 8 8×  matrix of the form 

.
A B

C D
Γ

 
Λ =  

 
                                                                                                                 (3.16) 

      Here A is a 33×  matrix for the transitions Jg = 1 → Je = 2, where the diagonal terms and the 

off-diagonal terms comprises of the excited state population and the excited state coherences 

respectively.  

      The other sub matrices B ( )3 5× , C ( )5 3× and D ( )5 5× are null matrices. The multiplicative 

constants
0b  (diagonal terms), 

1b  and 
2b  (off-diagonal terms), featuring in the matrix A are the 

branching ratio components of a transition. The transition is closed when all these constants are 

equal to 1. While 
0b  controls the transfer of population channel, 

1b  and 
2b  controls the TOC 

channel with 1m∆ = ± and 2±  respectively. 

The matrix A is given by 

( ) ( ) ( )
( ) ( ) ( )
( ) ( ) ( )

1, 1 1,0 1, 1

0, 1 0,0 0, 1 .

1, 1 1,0 1, 1

A

Λ + + Λ + Λ + − 
 

= Λ + Λ Λ − 
 Λ − + Λ − Λ − − 

                                 
                                          (3.17) 

Examples of diagonal and off-diagonal terms are illustrated below 
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2 2
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0

1, 1 CG e en

g g g g n nn

J m

J m J m e e

n

b ρ
−

=

Λ + + = Γ∑                         
                     (3.18a) 

( ) { }{ }1

1 0 1

1
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1

1,0 CG  CG  e e e en n

g g g g g g g g n nn n
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n
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+
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( ) { } { }1 1

1 1 1

0
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2

1, 1 CG  CG  e e e en n
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J m J m

J m J m J m J m e e

n
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Λ + − = Γ∑                                   (3.18c) 
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       In the computation, the branching ratio components 0b  and 2b are set as 1 and 1b is turned 

‘on’ or ‘off’ by removing the TOC contribution from 1 ±=∆m  coherences so as to illustrate the 

difference between the nonlinear Faraday and Voigt rotation. The computed nonlinear Faraday 

and Voigt signal for the atomic system Jg =1→Je =2 using ,0=∆ pr ,20000/ =Γ γ  ,120 == bb
 

 ,1.0/ =ΓΩo 1.0/ =ΓΩo

LG  and ( ) 3mmow z w= = for |l|=1. The percentage of narrowing in the 

linewidth of the polarization rotation signal induced by the LG beam with respect to the 

Gaussian beam in the Faraday and Voigt geometry for the atomic system Jg =1→Je =2 has been 

summarized in Table 3.2.   

 

 

 

Figure 3.12:  Computed polarization rotation signal for Faraday geometry due to Gaussian and 

LG field for the transition Jg=1→Je=2 in the presence and in the absence of TOC 

with 1m∆ = ±  coherences by turning ‘on’ or ‘off’ 1b , using, ,0=∆ pr ,20000/ =Γ γ  

,120 == bb
 

 ,1.0/ =ΓΩo 1.0/ =ΓΩo

LG
 and ( ) 3mmow z w= = for |l|=1. 
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Figure 3.13:  Computed polarization rotation signal for Voigt geometry due to Gaussian and LG 

field for the transition Jg=1→Je=2. Other parameters are the same as used in 

Figure 3.12. 
 

      The presence or the absence of the contributions from 1m∆ = ±  coherences does not seem to 

have any influence on the line shape of the computed nonlinear Faraday signal under the 

influence of both the fields (Figure 3.12). As expected, there is a significant narrowing in the 

nonlinear Faraday signal induced by the LG field in comparison to the Gaussian field, with the 

percentage of narrowing found to be 75%. On the other hand, the branching ratio component, 

1b which controls the TOC channel with 1m∆ = ± coherence, is found to influence the linewidth 

of the nonlinear Voigt signal, i.e. there is a reduction in its linewidth when 1b is turned ‘off’ 

(Figure 3.13). The linewidth of the polarization signals that has been obtained for both the 

geometries in the presence and in the absence of TOC channel with 1m∆ = ± coherences is 

summarized in Table 3.2. It can be seen that when 
1b is set as 1 (0), the percentage of narrowing 

in the nonlinear Voigt signal induced by the LG beam is found to be 83% (78%). As observed 

previously in the experiment and in the computation that was carried out for a Jg=1→Je=0 atomic 

system (Table 3.1), in this case also the narrowing induced by the LG field with respect to the 

Gaussian beam is found to be more for the Voigt geometry (by 8%) in comparison to the Faraday 

geometry (Table 3.2).  
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Table 3.2:  Gives the linewidth of the polarization rotation signal for different configurations due 

to the Gaussian and the LG beams in the absence of TOC channel 

with 1m∆ = ± coherences for the atomic system Jg=1→Je=2.  
  

  

 

 

      When the contributions due to theπ coherence is removed in the computation (by setting 1b to 

zero), the nonlinear Voigt signal is found to have almost similar linewidth as that of the 

nonlinear Faraday signal (Table 3.2). 

 

 

Table 3.3:  Comparison between the computed nonlinear Voigt signal that has been obtained for 

the atomic system Jg=1→Je=2 due to the Gaussian and LG beam profile by turning 

‘on’ or ‘off’ 1b  

 

 

 

 

      In Table 3.3, a comparison has been made between the computed nonlinear Voigt signal due 

to the Gaussian and LG beam profile by turning ‘on’ or ‘off’ 1b . The percentage of narrowing 

when
1b is set from 1 to 0 comes out to be 56% and 43% for Gaussian and LG beam respectively 

(Table 3.3).  
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       This implies that the influence of the LG field depends on the nature of the Zeeman 

coherences created (near-neighbor with 1m∆ = ±  coherence or next-near-neighbor with 2m∆ = ±  

coherences in this case). This could account for the difference in extent of narrowing observed 

for nonlinear Faraday and Voigt rotation signals subject to Gaussian and LG fields. Thus it is 

seen that the influence of the LG field on the Zeeman coherence lifetime is polarization 

dependent.  

 

3.4 Computational study of EIT using LG beam 

 

As discussed in chapter 1 [Section (1.5.1)], EIT is a phenomenon in which the atomic medium is 

rendered transparent for a resonant probe field in the presence of another pump beam resonant 

with a common higher or lower energy level (Fleischhauer et al., 2005). This process is generally 

associated with steep dispersion, brought about by enhancing the nonlinear susceptibility of the 

medium (Harris et al., 1990). To explore other implications of the LG field influence, a Lambda 

system was taken (Figure 1.3) and a detailed computational analysis was carried out to study 

EIT and reduced group velocity in the presence of the LG field.  

 

     The probe beam with Rabi frequency prΩ and the coupling beam with Rabi frequency 

puΩ couples the ground states b and c  respectively to the common excited energy level a . 

The detuning in the probe and the coupling beams are given by 
pr∆  and 

pu∆  respectively. The 

frequency associated with the probe and the pump beam is given by prω  and puω . 

 

      The unperturbed Hamiltonian oH and the atom-field interaction Hamiltonian IH for this 

lambda system is given by 

0 0

0 0

0 0

a

o b

c

H

ω

ω

ω

 
 

=  
 
 

�
                                                   (3.19) 

( ) ( ){ }cos cos .
I pr pr pu pu

H b a a b t c a a cω ω= + Ω + + Ω�
                

(3.20) 
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      Following the discussion in the previous chapter (Section 2.2), the total Hamiltonian of the 

system after making the RWA and slow variable transformation turns out to be 

0 .
2

0

a pr pu

pr b

pu c

H

ω

ω

ω

 Ω Ω
 

= Ω 
 Ω 

��
                                               (3.21)      

The relation between the probe/coupling beam detuning and their frequencies for this lambda 

system is given by 

ab pr pr ba pr prω ω ω ω− = −∆ ⇒ + = ∆                                                                               (3.22) 

ac pu pu ca pu puω ω ω ω− = −∆ ⇒ + = ∆                                                                              (3.23) 

where,  and .ac a c ab a bω ω ω ω ω ω= − = −  

 

The OBE (defined in Section 2.2) obtained for the lambda system is given by 

( ) ( ){ } ( )

( )

( )

  
2

 1/ 2 / 2
2

1/ 2 / 2
2

aa pr ab ba pu ac ca aa
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bb ba ab bb aa
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ρ ρ ρ ρ ρ γ ρ

ρ ρ ρ γρ ρ γ

ρ ρ ρ γρ ρ γ
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
Ω 

= − − + Γ + 


Ω 
= − − + Γ + 




� � � � � �


� � � � �
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Atomic populations (3.24a)    
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2 2 2

  
2 2 2

pr pu

ab aa bb cb pr ab ab

pu pr
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i

i

ρ ρ ρ ρ ρ γ ρ

ρ ρ ρ ρ ρ γ ρ

Ω Ω   Γ 
= − − + ∆ − +   

   

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Optical coherences  

                                                                        (3.24b)    
 

( )  
2 2

pu pr

bc ba ac pu pr bc bc
iρ ρ ρ ρ γρ

Ω Ω   
= − + ∆ − ∆ −  

  


� � � � � Zeeman coherences           (3.24c)  
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      The 9 OBE ( 3 3× ) obtained for the Lambda system are numerically solved under the steady 

state conditions by setting the right hand side of (3.24) to 0 (Rochester, 2008). For the 

computation, the Gaussian beam is taken as the probe beam and the corresponding Rabi 

frequency, 
pr

Ω  is given by (2.11). The absorptive and dispersive profile (Imaginary and real part 

of susceptibility) of the Gaussian beam is studied under the influence of LG beam, which is 

taken as the coupling beam with the Rabi frequency, puΩ  modeled by (2.12). To make a 

comparative study, LG beam is replaced by Gaussian beam as the coupling beam.  

     The computed probe absorption and dispersion profile as a function of probe detuning are 

given in Figures 3.14 and 3.15 respectively. The azimuthal mode index associated with the LG 

beam is taken as |l|=1with / 1000,  / 0.4,   / 0.04,pu prγΓ = Ω Γ = Ω Γ = / 10,pu prΩ Ω = 0,pu∆ =                                          

0 1b = and ( ) 3mmow z w≈ = . 

 

      The linewidth of the probe absorption with Gaussian and LG beam used as the coupling 

beams are 0.164 MHz and 0.025 MHz respectively (Figure 3.14). It can be seen that the width of 

the transparency window (probe absorption profile) with LG beam used as the coupling beam is 

significantly narrower than the case when LG beam is replaced with a Gaussian beam.  

 

 

Figure 3.14: Computed probe absorption for the lambda system with |l|=1, / 1000,  γΓ =  
 

/ 0.4,   / 0.04,pu prΩ Γ = Ω Γ = / 10,pu prΩ Ω = 0,pu∆ = 0 1b =  and 3mm.ow =  
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Figure 3.15:   Computed probe dispersion for the lambda system. Parameters are the same as 

those used in Figure 3.14.    

 

       In the computational analysis with the lambda system, it was found that LG beam brings 

about a steeper dispersive profile when used as the coupling beam with a linewidth of 0.011 

MHz, in comparison to the Gaussian beam (linewidth in this case was found to be 0.064 MHz) 

(Figure 3.15). 

      As discussed previously, in the EIT process, the region of steep dispersive profile is 

accompanied by small absorption (Harris et al., 1990; Fleischhauer et al., 2005). Consequently 

this results in different effects like reduced group velocity (due to the slowing of light), 

longitudinal pulse compression and storage of light (Harris et al., 1990; Harris et al., 1992; 

Fleischhauer et al., 2005). Since LG beam brings about a steeper dispersive EIT profile than the 

Gaussian beam (Figure 3.15), it was of interest to make a comparative study between the group 

velocity due to the Gaussian and LG beam. 

 

Group velocity, grv is defined as (Lighthill, 1965)  

,
pr

gr

pr

d
v

dk

ω
=                                                                                                                            (3.25) 
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where, the frequency of the probe beam, 
pr

ω is given in terms of the speed of light ,c  the wave 

number associated with the probe beam, prk  and the refractive index Rn . 

pr

pr

R

ck

n
ω =                                                                                                                              (3.26) 

1pr

gr pr

pr R R pr R

ckd c d
v ck

dk n n dk n

   
= = +   

   
                                                                        (3.27) 

2
     

pr R

R R pr

ck dnc

n n dk
⇒ −                                                                                                                               (3.28) 

      .
prR R R

gr

pr pr pr pr

ddn dn dn
v

dk d dk d

ω

ω ω
= × =∵                                                                                          (3.29) 

 

On substituting (3.29) in (3.28) we have, 
 

2 2
1

gr prR R
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R R pr R pr R

v ckdn dnc c
v ck v

n n d n d nω ω

 
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       Let ( )gr G
v and ( )gr LG

v  be the group velocity due to Gaussian and LG beam respectively as 

the coupling beam. The ratio of the group velocities are given by 
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( ) ( )
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From (3.22) ,pr prd dω ∝ ∆  

( ) ( )

( )

( )

( )( )
( )( )

Re

slope Re
/ .

  slope ReRe
  

pr LG LG
gr grG LG

G

pr G

d

d
v v

d

d

χ

χ

χχ

 
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 
  ∆ 

                                                  (3.33) 

Summarizing, 
 

( ) ( ) slope of the dispersive profile due to LG beam
/ .

  slope of the dispersive profile due to Gaussian beam
gr grG LG

v v⇒ =        (3.34) 

 

      The slopes of the dispersive profiles due to Gaussian and LG beams were calculated from 

Figure 3.15 and the ratio of the respective group velocities were found to be  

( ) ( ) 83
/ 6

14
gr grG LG

v v⇒ ≈ =                                                                                                                    (3.35) 

( ) ( )1
.

6
gr grLG G

v v⇒ ≈                                                                                                                                (3.36) 

 

      Thus it can be seen from (3.36) that the LG beam brings about a reduction in the group 

velocity approximately by a factor of 6 for the given lambda system with the parameters that 

have been mentioned in the computational analysis.  

 

      The reduced group velocity results in slowing down of light pulse inside the atomic medium 

(Harris and Hau,1999), followed by large group delays and spatial compression in the pulse 

propagation from kilometer to sub millimeter scale range inside the atomic medium (Hau et al., 

1999). The slow group velocity thus enables the stopping and storing of a light pulse, where in 

the information contained in a long pulse can be compressed to a very small spatial volume (Hau 
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et al., 1999; Fleischhauer and Lukin, 2000; Liu et al., 2001). Also, the reduced group velocity of 

the light pulse increases the interaction time in the nonlinear atomic medium, in-turn enhancing 

the efficiency of the nonlinear process (Harris and Hau, 1999; Lukin et al., 2000; Lukin and 

Imamoglu, 2001). All these find several potential applications in optical information storage, 

quantum information processing and laser cooling (Lukin et al., 2000; Fleischhauer and Lukin, 

2002; Harris, 2000).   

 

     Since the LG beam profile reduces the group velocity of the light pulse in comparison to a 

Gaussian beam, we may expect an enhancement in the storage time, time delay, the spatial 

compression and the efficiency of atomic coherence induced nonlinear optical process by 

replacing the Gaussian beam with the LG field. It would of considerable interest to attempt such 

experiments in future. 

 

3.5. Conclusions 

 

NMOR-I and the NMOR-II have been measured under the influence of the LG beam. Narrowing 

is observed in the line shape of the NMOR-I due to LG beam in comparison to a Gaussian beam. 

The spatial profile of the LG field is found to have no influence on the NMOR-II resonance 

where the linewidth is determined by spin exchange collisions. Therefore no significant change 

was found in the linewidths of the NMOR-II between the Gaussian and LG beam. 

 

      A comparison was made between the nonlinear Faraday and Voigt rotation signals for the 

transition Rb87(Fg=2→Fe′ =3) due to the Gaussian and LG beam. The extent of narrowing in the 

line shape of the polarization rotation signal induced by the LG beam was found to be more in 

the case of the Voigt geometry. It was shown that the influence of the LG field depends on the 

nature of the Zeeman coherences created (near-neighbor with 1m∆ = ±  coherence or next-near-

neighbor with 2m∆ = ±  coherences in this case). This could possibly explain the difference in the 

percentage of narrowing induced by the LG beam with respect to the Gaussian beam between the 

nonlinear Faraday and Voigt rotation signal. Hence it can be concluded that the influence of the 

LG beam could be polarization dependent.  
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      Computational analysis was carried out in a lambda system to study EIT and slow light in the 

presence of the LG field. It was found that the LG field induces a steeper dispersive EIT profile, 

bringing about a marginal reduction in the computed group velocity in comparison to the 

Gaussian beam. This may find applications in storing, stopping of light and atomic coherence 

enhanced nonlinear optical process.  
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CHAPTER 4 

 

Ellipticity dependent polarization rotation studies with a  

Laguerre Gaussian beam 

 

 

4.1 Introduction     
 

It has been shown in the previous chapter that the extent of narrowing induced by the LG field in 

the line shape of the magneto-optical rotation was found to be more in the Voigt geometry in 

comparison to the Faraday geometry, implying that the influence of the LG beam is polarization 

dependent.  

 

      The production, detection and manipulation of higher order coherences is an area of 

emerging interest as they play a crucial role in enhancing the optical nonlinearities (Ledbetter et 

al., 2008), as a result of which they find several applications like EIT (Harris, 1997), atomic 

magnetometry (Budker et al., 2000; Yashchuk et al., 2003; Hovde et al., 2010), quantum gates 

(Turchette et al., 1995) and photonic switches (Harris and Yamamoto, 1998). Therefore, it was 

of interest to investigate the influence of the LG beam on higher order Zeeman coherences which 

will be discussed in this chapter. We compare the ellipticity dependent NMOR, obtained as a 

function of detuning using a Gaussian and LG beam as the probe optical field. This study enables 

us to determine the influence of the LG beam on higher order Zeeman coherences 

(with 2 ±≥∆m ) by extracting their contribution from the measured data.  

 

4.2 Ellipticity dependent NMOR due to LG beam  

 

4.2.1 Extraction of the HOC 

 

As discussed in chapter 1 (Section 1.5.4), in the weak field approximation, the origin of NMOR 
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can be attributed to the nonlinear terms in the electromagnetic fields obtained by perturbative 

expansion of the electric susceptibility (Chen et al., 1987; Chen et al., 1990; Holmes and 

Griffith, 1995; Budker et al., 2002). Using such an approximation, the origin of NMOR can be 

attributed to the formation of ground state coherences with 2m∆ = ±  by a two-photon process 

and thus can be described by ,Λ V or X schemes (Chen et al., 1990; Holmes and Griffith, 1995; 

Ståhlberg et al., 1990). The interaction of the medium with elliptically polarized light renders it 

dichroic and birefringent, which results in the rotation of the elliptical polarization (Section 

1.5.4).  

 

      It has been shown by Giraud-cotton et al. (1985) that in the absence of the magnetic field, the 

nonlinear susceptibility
lχ and

rχ (due to the left and the right circularly polarized light 

components) will be the same for linearly polarized light, as a result of which no magneto-optical 

activity will occur. But the presence of the elliptically polarized beam gives rise to a magnetic 

field independent term which results in an effect proportional to the difference in the intensity of 

the left and the right circularly polarized component (Giraud-Cotton et al., 1985). This difference 

in the light intensity results in different light shifts of the magnetic Zeeman sublevels. In other 

words, the degeneracy of the magnetic Zeeman sublevels are lifted due to the ac Stark effect 

even in the absence of the magnetic field because of the interaction of the light with non-resonant 

atomic transitions (Figure 4.1). The resulting polarization rotation signal is known as the self-

rotation signal and it was found to occur when there was large detuning in the laser beam 

frequency (Giraud-Cotton et al., 1985; Rochester et al., 2001; Novikova et al., 2001; Novikova, 

2003a).  

 

Figure 4.1: Energy level diagram to illustrate the self-rotation process.  
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      It has been shown that the ac-Stark shift of the Zeeman sublevels is inversely proportional to 

the detuning from the corresponding non-resonant atomic hyperfine transition (Novikova et al., 

2000). Self-rotation SRϕ  is given by (Novikova, 2003a) 

( )1/ 2 ,
SR

g Lϕ ϕ ϕ ε+ −= − =                                                                                                   (4.1) 

where, g is the self-rotation coefficient, ε  the ellipticity of the incident beam and L  the length 

of the cell.  

 

    When the laser is detuned across the Doppler profile of a hyperfine structure transition, the 

contribution to the overall rotation of the elliptically polarized beam comes from the polarization 

rotation signal in the presence of the magnetic field and the self-rotation of elliptically polarized 

beam. Since self-rotation does not depend on the magnetic field, its effect can be eliminated by 

subtracting the self-rotation signal from the polarization rotation measurement in the presence of 

the magnetic field. The resulting difference comprises of the polarization rotation of a linearly 

polarized beam (nonlinear Faraday effect) and the rotation due to elliptically polarized beam.  

 

 

                                  (a)                                                                (b)  
 

Figure 4.2: (a) Lambda ( Λ ) scheme and (b) M scheme. 

 

      Matsko et al. (2003) had used the transitions Fg =1→Fe′=0 and Fg =2→Fe′=1 to represent the 

Λ  and M scheme highlighted in Figure 4.2(a) and Figure 4.2 (b) respectively. As shown in 

Figure 4.2 (b), multi-photon processes are responsible for creating the ground-state higher order 

coherence (HOC) in a M scheme. Matsko et al. (2003) had showed that for the Λ scheme the 

rotation does not depend on the light ellipticity (4.2). On the other hand, for the M scheme, they 
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had shown that HOC with 4m∆ = ±  is responsible for creating a new type of polarization 

rotation which depends on both the light ellipticity and the applied magnetic field (Matsko et al., 

2003; Novikova, 2003a). The expression for the polarization rotation for a Λ  scheme and M 

scheme is given by (Matsko et al., 2003; Novikova, 2003a) 

 

I2
ln

I

inL

out

ω
ϕ

γ
Λ

 
=  

 
                                                                                                                 (4.2) 

( )

2

2
2

I2
1 2 ln ,

I2

inL
M

out

q

q

ω
ϕ

γ
+Λ

   + = +  
 −   

                                                                               (4.3) 

where, Lω  denotes the Larmor frequency, γ  gives the decoherence rate and q represents the 

ellipticity parameter. Iin and Iout  are the intensities of the beam at the entrance and the exit of the 

vapor cell respectively.  

( )

2

2
2

1 2
1 2 .

2 2

M q

q

ϕ

ϕ
+Λ

Λ

 
+ = +

 − 
                                                                                                 (4.4) 

 

      Matsko et al. (2003) had attributed the ellipticity dependent NMOR to the M scheme 

induced coherence. Since the HOC with 4m∆ = ±  becomes significant only for elliptically 

polarized beam, the influence of the LG beam profile on the HOC has been investigated by 

carrying out the ellipticity dependent polarization rotation measurements.  

 

4.2.2 Experimental Details and discussions 

 

The experimental set-up that was used to measure the polarization rotation signal is show in   

Figure 4.3. The LG beam (with OAM |l|= 1 and 3) was created using a CGH (He et al., 1995). 

The probe beam was polarized along the x-axis and passed through Rb vapor cell with a natural 

mixture of the Rb isotopes (Figure 4.3). A solenoid was used to apply a longitudinal magnetic 

field (Bz) along the direction of propagation of the probe beam (Faraday geometry). A pair of 

Helmholtz coils was used to null the fields in the other two directions to ~ 0.3 mG. A QWP 

placed before the Rb vapor cell is used to control the ellipticity of the incident beam. Using the 
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balanced polarimetry arrangement [discussed in Section 1.5.4 (Figure 1.11 (b))], the rotation of 

the plane of polarization of the incident probe beam is obtained by measuring the differential 

signal between the two photodiodes. 

 

 

 

Figure 4.3: Experimental set-up used for measuring the NMOR with a LG beam of azimuthal 

mode index, |l|.  

 

      The ECDL was detuned across the transitions Rb
85

 (Fg =3→Fe′), Rb
85

(Fg =2→Fe′), Rb
87

(Fg 

=1→Fe′),  Rb
87

(Fg =2→Fe′) (Figure 4.11). The polarization rotation measurements were carried 

out with the Gaussian and LG beam (OAM, |l| = 1 and 3) for ellipticity ε = 0
°
, 4

°
, 10

°
, 15

°
, 20

°
, 

26°, 35° in the presence of a longitudinal magnetic field of 0.35 Gauss (Figures 4.4, 4.6 and 4.7 

respectively).  

 

      The sub-Doppler features that have been observed (highlighted by a star in Figures 4.4, 4.5, 

4.6, 4.8 and 4.10) arise due to retro-reflections of the laser beam inside the atomic cell. Such 

features have also been reported by Matsko et al. (2003). These authors point out that the retro-

reflected beam interacts with the atoms inside the cell and causes redistribution of atomic 

population similar to the one that is observed in the case of the Doppler-free saturation 

spectroscopy. Retro-reflections are quite difficult to remove and are present irrespective of the 

type of cell used. A similar observation has also been by Novikova (2003a). The sub-Doppler 

peak observed corresponds to the most intense ‘Lamb-dips’ observed in saturation spectroscopy 

(usually due to a cross-over resonance). ‘Lamb-dips’ appear at specific locations of an otherwise 

unchanged Doppler-broadened spectrum. The width of the polarization rotation signal is 
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comparable to the Doppler-broadened spectrum. Therefore, although the polarization rotation 

information is lost at the site of the sub-Doppler peak, it is safe to assume the rest of the signal is 

unaffected. Moreover these features do not change much between a Gaussian and a LG beam. In 

this study we focus on the evolution of the broad polarization rotation signal. 

 

      With increase in ellipticity the polarization rotation signals of the Rb
85

(Fg=2→Fe′) and 

Rb
87

(Fg=1→Fe′) transitions obtained with the LG beam (OAM, |l| = 1 and 3) diminishes and 

flips from a downward peak to an asymmetric upward peak for ε ≥ 26° and ε ≥ 35° respectively 

(Figures 4.4 and 4.6). With the Gaussian beam, a similar trend is observed but the flipping 

appears to be incomplete (Figure 4.5) in the measured ellipticity range. A comparison between 

the measured polarization rotation signal for Gaussian and LG beam with |l| =1 and 3 for ε = 35
°
 

is shown in Figure 4.5(a) and (b) respectively to illustrate this behavior. The flipping in the 

measured polarization rotation signal induced by the LG beam with |l| =1 and 3 at ε = 35° 

appears to be more pronounced in the former case (Figure 4.5).      

 

      The ellipticity dependence is weaker for the transition Rb
87

(Fg=2→Fe′) in the presence of 

both Gaussian and LG beams and no change in curvature is observed (Figure 4.7). Similar 

behavior have been observed for the measured polarization rotation signal for the transitions 

Rb
85

(Fg=3→Fe′) (not shown).  
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Figure 4.4:  Measured polarization rotation signal for (a) Gaussian beam, (b) LG beam |l| =1 and 

(c) |l| =3 respectively for ellipticity ε = 0
°
, 4

°
, 10

°
, 15

°
, 20

°
, 26

°
, 35

°
 when the laser is 

detuned across the transition Rb
85

(Fg=2→Fe′). Internal sub-Doppler features are 

observed in the measured polarization rotation signal (highlighted by the star). 

Refer to text for details.  
 

    
                                    (a)                                                                  (b) 

Figure 4.5:  A comparison between the measured polarization rotation signal for (a) Gaussian 

and LG beam with |l| =1 for ε = 35° and (b) Gaussian and LG beam with |l| =3 for ε 

= 35
°
 is shown.  
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Figure 4.6:  Measured polarization rotation signal for (a) Gaussian beam, (b) LG beam |l| =1 and 

(c) |l| =3 for ellipticity ε = 0
°
, 4

°
, 10

°
, 15

°
, 20

°
, 26

°
, 35

°
 when the laser is detuned 

across the transition Rb
87

(Fg=1→Fe′).  

 

                 The LG beam is found to flip the curvature of the polarization rotation signal at a 

lower value of ellipticity in comparison to the Gaussian beam for the transitions Rb85(Fg=2→Fe′) 

and Rb87(Fg=1→Fe′) . In order to further explore this behavior, the contributions to the higher 

order Zeeman coherences were extracted from the measured data. 
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Figure 4.7:  Measured polarization rotation signal for (a) Gaussian beam, (b) LG beam |l| =1 

and (c) |l| =3 for ellipticity ε = 0°, 4°, 10°, 15°, 20°, 26°, 35° when the laser is detuned 

across the transition Rb
87

(Fg=2→Fe′). A similar behavior is obtained for the 

transition Rb
85

(Fg=3→Fe′) (not shown in this thesis).        

 

 

      To enable the extraction, the following measurements were carried out with the Gaussian and 

LG beams (OAM, |l| = 1 and 3) maintained at the same intensity for the cases  

(i) The polarization rotation signal of a linearly polarized beam (ε = 0
°
) at Bz = 0.35 G, 

(ii) The self-rotation signal of the elliptically polarized beam (ellipticity ε) in the absence of the 

magnetic field.  

(iii) The rotation of plane of polarization of the elliptically polarized beam (ellipticity ε) at Bz = 

0.35 G.  

 

      As discussed in the introduction, by removing the effect of polarization rotation due to 

linearly polarized beam and self-rotation of elliptically polarized beam from the polarization 
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rotation of elliptically polarized beam, one can extract the contributions to the HOC, i.e., by 

subtracting (i) and (ii) from (iii) [Novikova, (2003b)]. 

 

 

 

Figure 4.8:  Contributions to the higher order coherences for (a) Gaussian beam, (b) LG beam 

|l| =1 and (c) |l| =3 for ellipticity ε = 4
°
, 10

°
, 15

°
, 20

°
, 26

°
, 35

°
 when the laser is 

detuned across the transition Rb
85

(Fg=2→Fe′).  

 

      The contributions to the HOC due to  Gaussian and LG beam (OAM, |l| =1 and 3) for 

ellipticity ε = 4°, 10°, 15°, 20°, 26°, 35° for the transitions Rb85(Fg=2→Fe′), Rb87(Fg=2→Fe′) and 

Rb87 (Fg=1→Fe′) as shown in Figures 4.8, 4.9 and 4.10 respectively. With increase in ellipticity, 

the extracted HOC of the Rb
85

(Fg=2→Fe′) and Rb
87

(Fg=1→Fe′) transitions obtained with the LG 

beam (OAM, |l|  = 1 and 3) increases and flips from a downward peak to an upward peak for ε 

≥ 15
°
 and ε ≥ 35

°
 respectively (Figures 4.8 and 4.10). This behavior is similar to the one 

observed for the polarization rotation signal (Figures 4.4 and 4.6). With the Gaussian beam a 

similar trend is observed for the transition Rb
85

(Fg=2→Fe′), but the flipping is found to occur at 
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higher ellipticity, ε ≥ 26° [Figure 4.8(a)]. For the transition Rb87(Fg=1→Fe′), no change in the 

curvature is observed in the presence of Gaussian beam with increase in ellipticity (Figure 4.10). 

 

   

 

Figure 4.9:  Contributions to the higher order coherences for (a) Gaussian beam, (b) LG beam 

|l| =1 and (c) |l| =3 for ellipticity ε = 4°, 10°, 15°, 20°, 26°, 35° when the laser is 

detuned across the transition Rb
87

(Fg=2→Fe′). A similar behavior is obtained for the 

transition Rb
85

(Fg=3→Fe′), not shown in this thesis. 

 

      At ε = 4
°
, the HOC extracted for transition Rb

87
(Fg=2→Fe′) has upward and downward peaks 

for Gaussian and LG beams (OAM, |l|   = 1 and  3) respectively (Figure 4.9). The curvature of 

the HOC is found to be ellipticity dependent for the Gaussian beam, flipping from an upward to 

downward peak with the increase in value of ellipticity (at ε≥ 20
°
). No change in curvature is 

observed for LG beam with increase in ellipticity. A similar behavior has been observed for the 

extracted HOC for the transition Rb85(Fg=3→Fe′) (not shown).   
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Figure 4.10:   Contributions to the higher order coherences for (a) Gaussian beam, (b) LG beam 

|l| =1 and (c) |l| =3 for ellipticity ε = 4°, 10°, 15°, 20°, 26°, 35° when the laser is 

detuned across the transition Rb
87

(Fg=1→Fe′).  

 

      Summarizing, (i) The polarization rotation signal and the extracted HOC obtained with LG 

beam is found to be ellipticity dependent for the transitions Rb
85

(Fg=2→Fe′) and 

Rb87(Fg=1→Fe′), the curvature flipping with increase in the value of ellipticity. A similar trend is 

observed with Gaussian beam for the transition Rb85(Fg=2→Fe′). The curvature of the extracted 

HOC due to the Gaussian beam is not found to flip for the transition Rb
87

(Fg=1→Fe′). The 

curvature flip occurs consistently at a lower value of ellipticity for the LG beam than the 

Gaussian beam. 

 

      (ii) The ellipticity dependence of the measured polarization rotation signal and the extracted 

HOC is weaker for the transition Rb
87

(Fg=2→Fe′) obtained with the LG beam, the curvature not 

changing with the increase in the value of ellipticity. A similar behavior is observed for the 

measured polarization rotation signal obtained with the Gaussian beam, but the extracted HOC is 
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found to be ellipticity dependent, its curvature flipping with the increase in the value of 

ellipticity.  

 

      From these results it is seen that the ellipticity dependent behavior of the polarization rotation 

signal and the extracted HOC depends on the beam profile (LG or Gaussian beam) and on the 

transitions studied.  

 

4.3 Computational Analysis 

 

The energy level diagram associated with Rb
87

 and Rb
85

 D2 transition is shown in Figure 4.11. 

Three hyperfine transitions are associated with each of the Doppler broadened profiles of D2 line 

- Rb
87

(Fg=1→Fe′), Rb
87

(Fg=2→Fe′), Rb
85

(Fg=2→Fe′) and Rb
85

(Fg=3→Fe′) (Figure 4.11). The 

polarization rotation signal was measured by detuning the probe beam over the Doppler 

broadened D2 line. A computation of the polarization rotation signal taking into account all the 

hyperfine transitions and Doppler broadening is quite complicated. In addition, the spatial profile 

of the LG beam has to be taken into account. We found these complexities difficult to overcome 

and carried out a simpler computational analysis with degenerate two-level systems to illustrate 

the LG field’s influence on Zeeman coherences.  

 

 

  

Figure 4.11: Energy level diagram for the transitions (a) Rb
87

(Fg=1→Fe′), (b) Rb
87

(Fg=2→Fe′), 

(c) Rb
85

(Fg=2→Fe′) and (d) Rb
85

(Fg=3→Fe′). 
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      To choose the two - level systems, the relative hyperfine transition strengths ( ′
eFF

S ) (Steck, 

2010) were considered (Table 4.1). The ′
eFF

S  provides the measure of the relative strength of 

each of the Fg → Fe′ hyperfine transitions and the dominant transition in each of the Doppler 

profile was assumed to be representative of the entire profile.  

( )
2

1
2 1 (2 1) ,

e

g e

e gFF

e g

J J
S F J

F F I
′

  ′= + +  ′
  

                                                                       (4.5) 

 

where, I is the total nuclear angular momentum, Jg and Je represents the total angular momentum 

quantum number of the ground and the excited states, respectively and the term in curly bracket 

is the Clebsch - Gordon coefficient. ′
eFF

S is independent of the particular ground state sublevel 

chosen and obeys the sum rule (Steck, 2010), 

 

1.
e

e

FF
F

S ′
′

=∑                                                                                                                              (4.6) 

 

      The chosen two - level systems either exhibit EIT or EIA. The systems are either closed (no 

loss of population) or open (some population is lost to the other hyperfine ground states).  It can 

be seen [Table 4.1 (Steck, 2010)] that for the Doppler profiles Rb
87

(Fg=2→Fe′) and 

Rb
85

(Fg=3→Fe′), the pure transitions Rb
87

(Fg=2→3) and Rb
85

(Fg=3→4) respectively are found to 

have the maximum relative hyperfine transition strength. These two transitions form closed EIA 

systems and hence can be best described by Jg = 1 → Je = 2, which is the simplest EIA system 

(Lezama et al., 1999; Renzoni et al., 2001). For the Doppler profile Rb
85

(Fg=2→Fe′ ), the relative 

hyperfine transition strength is almost same for all transitions Rb
85

(Fg=2→2), Rb
85

(Fg=2→1) and 

Rb
85

(Fg=2→3) (Table 4.1). While the former two transitions form open and closed EIT systems 

respectively, the latter one forms an open EIA system.  In this case we assume the Doppler 

profile can be represented by an EIT system and choose Jg = 1 → Je = 1(to represent an open EIT 

system) and Jg = 2 → Je = 1 (to represent closed EIT system) for the computation (Renzoni et al., 

1997).  
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      For the Doppler profile Rb87(Fg=1→Fe′), the two transitions, Rb87(Fg=1→2) and 

Rb
87

(Fg=1→1) have the same relative hyperfine transition strength (Table 4.1). The former 

transition is an open EIA system and the latter an open EIT system. In this case no clear cut 

choice of a two - level system is possible. Also, the extracted HOC with the Gaussian beam does 

not change its curvature (Figure 4.10) unlike the HOC extracted for Rb85(Fg=2→Fe′) and 

Rb
87

(Fg=2→Fe′) [Figure 4.8 and 4.9]. Therefore, no specific conclusions could be drawn in this 

case. 

 

Table 4.1: The relative hyperfine transition strength for all the hyperfine transitions (Steck, 

2010).  
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4.4 Computational results 

 

The two-level atomic systems Jg = 1 → Je = 1, Jg = 2 → Je = 1 and Jg = 1 → Je = 2 that were 

chosen to represent the EIT and the EIA systems are shown in the Figure 4.12.  

  

Figure 4.12:   Atomic level diagram for the transitions (a) Jg = 1 → Je = 1, (b)  Jg = 2 → Je = 1  

and (c) Jg = 1 → Je = 2. 
 

      As discussed in Section 2.2, the unperturbed Hamiltonian oH
 
and the magnetic interaction 

energy BH are given by (2.3) and (2.4). Expression for the atom-field interaction Hamiltonian 

IH  is given by  

( ) ( ){ }
,

  . ,
I ij ij

i j
i j

H i j d E d E h c
σ σ+ −

≠

= + +∑                                                                 (4.7)    

where, h.c is the Hermitian conjugate of the first term in (4.7). The quantization axis was chosen 

along the magnetic field direction. The electric field vector associated with the probe beam 

propagating along the z direction and polarized in the x direction is given by       

( ) ˆcos  o pr xE E t eω=
�

                                                                                                             (4.8) 

( ) ( )1
ˆ ˆ ˆcos sin cos / 4 sin / 4 ,

x
e e i e iε ε ε π ε π+= + = − − + −                                       (4.9)   
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where,
pr

ω is the frequency of the probe beam and ˆ
xe is unit polarization vector, 

ˆ ˆ ˆ( ) / 2
x y

e e e± = +∓ are its cyclic basis vectors and
4 4

π π
ε ε= − ≤ ≤ + , the ellipticity of the probe 

field (Brazhnikov et al., 2005; Brazhnikov et al., 2006).  

      The optical Bloch equations obtained for the two-level atomic system are numerically solved 

under the steady state conditions (Rochester, 2008). The polarization rotation angle per unit 

length, ϕ  for the atomic transition Jg = 1 → Je = 2 is given by (Malakyan et al., 2004) 

( ) ( ){ }
2

0

,

sec(2 ) cos sin Re[ ] cos sin Re[ ] .
16  i j i je g e g

i j
i j

λ
ϕ ε ε ε ρ ε ε ρ

π
− +

≠

Π
= + + −

Ω
∑    (4.10)        

For a closed Jg → Je transition it was shown that (Sobelman, 1992) 

3
2

0 2

4 1
  ,

3 2 1

o
e e g g

e

J r J
c J

ν
α αΠ =

+
                                                                           (4.11)                                                            

where, 
i je gρ +   and 

i je gρ −  represents the optical transitions satisfying the selection rule 1m∆ = ±  

respectively. The angled bracket in (4.11) represents the reduced matrix element which is 

defined in (2.7) and
oν  is the frequency difference between the ground and the excited states in 

the absence of the magnetic field. To compute the polarization rotation angle for the LG beam, 

Ω  in (4.10) is replaced by LGΩ  (with o

LGΩ treated as a constant). A double integration has to be 

carried out over parameters r  andφ . As the dimension of the density matrix increases (more 

than 44× ), the computational analysis with a double integration becomes intractable. Therefore 

the integration was carried out over r , varying it from 0 to ow [ignoring the z dependence as in 

(2.1)], and φ  was set to 0 as it has been found that the rotation signal is unchanged for all values 

of φ  (0 to 2π ). The expression for polarization rotation angle per unit length with a LG field is 

given by 

( ) ( ){ }
2

2

2

0

 ,0

sec(2 ) cos sin Re[ ] cos sin Re[ ]
.

16  
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i j i j

o

w
e g e g

LG l r
i jr woi j
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rdr
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e
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− +
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≠

Π + + −
=

 
Ω  
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      The polarization rotation was computed as a function of one-photon detuning. However no 

flipping was observed in the curvature for both the EIT and the EIA systems (figure not shown). 

Therefore the polarization rotation and HOC were analyzed in terms of openness of the transition 

and for this purpose these observables were studied as a function of branching ratio, 2.b  

 

     In order to investigate the influence of the Gaussian and LG beam profiles on the HOC, as 

discussed in the previous chapter (Section 3.3.2), the repopulation matrix ΓΛ  (3.16) is rewritten 

such that the individual contributions to the TOC channel from the excited state coherences can 

be separated out in the computation (Ram et al., 2009). Here A given by (3.17) in the third 

chapter is a 3 3× matrix (for the transitions Jg = 1 → Je = 1 and Jg = 1 → Je = 2) and 5 5×  matrix 

(for the transition Jg = 2 → Je = 1). 

 

      The normalized excited state - HOC, 
1 1e eρ − + (with 2m∆ = ± ) was calculated as a function of 

the branching ratio, 2b (varying it from 1 to 0) with Gaussian and LG fields at ε = 0
°
 and 35

°
 for 

the two-level atomic systems Jg = 1 → Je = 2, Jg = 2 → Je = 1 and Jg = 1 → Je = 1 respectively. 

The branching ratio components 0b & 1b  are set as 1. The OAM associated with the LG beam is 

taken as |l| = 1 with / 20,γΓ =  / / 1,o

G LG
Γ Ω = Γ Ω =  ∆=1, 0.35 MHz

L
ω = and 3mm

o
w = . No 

difference was observed between results computed for |l| = 1 and |l| = 3 (not shown). 

 

      The calculated HOC, 1 1e e
ρ − +  as a function of 2b , is found to change with an increase in the 

value of ellipticity in the presence of the Gaussian beam for the EIA system (transition Jg =1 → 

Je =2) [Figure 4.13 (a) - (i) and (iii)].  No such ellipticity dependent behaviour is seen for the LG 

beam [Figure 4.13 (a) - (ii) and (iv)] in this case. No significant difference can be seen in the 

behaviour of HOC, 1 1e e
ρ − +  with increase in ellipticity in the presence of both Gaussian and LG 

beams for the EIT system (transitions Jg =1 → Je =1 and Jg =2 → Je =1) when 2b  is varied it from 

1 to 0 [Figure 4.13 (b)]. 
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     (a) 

 
                                                                        (b)     
Figure 4.13:  Calculated excited state - HOC, 1 1e e

ρ − +  for (a) transition Jg =1 → Je =2 with (i), 

(iii) Gaussian beam and (ii), (iv) LG beam at ε=0
° 
and 35

° 
respectively (b) Panels 

(i),(ii) and (iii), (iv) transitions Jg =2 → Je =1 and Jg =1 → Je =1 respectively at ε 

=0
° 

and 35
°
, using ,20/ =Γ γ  / / 1,

o

G LG
Γ Ω = Γ Ω =  ∆=1, 0.35 MHz

L
ω = , |l| = 1 

and 3mm
o

w = .  
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     From these results it can be inferred that when the TOC process ( 2m∆ = ± coherence) is 

varied by varying 2 ,b  the evolution of excited state Zeeman coherence 1 1e e
ρ − + with ellipticity is 

found to depend on the beam profile for the EIA system unlike the EIT system. 

     This plot could be better understood by plotting{ }1 1 1 1LG G 1i
e e e e

b
ρ ρ− + − + =

− as a function 

of ellipticity with
i

b =1(closed system) and all other parameters remaining the same as used in 

Figure 4.13. The difference in the magnitude of excited state - HOC, 
1 1e eρ − +  (with 2m∆ = ± ) was 

calculated between LG and Gaussian beams and plotted as a function of ellipticity for the 

transitions Jg =1 → Je =1, Jg =2 → Je =1  and Jg =1 → Je =2 (Figure 4.14).  

 
 

Figure 4.14:  The difference in the magnitude of HOC, 1 1e eρ − +  between LG and Gaussian beams 

plotted as a function of ellipticity for the transitions Jg = 1 → Je = 2, Jg = 2 → Je = 

1 and Jg = 1 → Je = 1. The branching ratio components, ib  is set as 1. All the 

other parameters are the same as those used in Figure 4.13. 
 

     It is seen that{ }1 1 1 1LG G 1i
e e e e

b
ρ ρ− + − + =

− is distinctly different for the EIA system, 

decreasing with increase in ellipticity.  This suggests that for the EIA systems, the ellipticity 



 

 

97

dependence of the Zeeman coherence, 
1 1e eρ − + depends on the spatial profile of the probe optical 

field. A corresponding observation can also be made from the experimental data: The ellipticity 

dependence of the extracted HOC contribution for Rb87(Fg=2→Fe′) also depends on the spatial 

profile of the probe optical field, changing curvature with ellipticity only for a Gaussian beam 

[Figure 4.9 (a)].  

 

      For the EIT system,{ }1 1 1 1LG G 1i
e e e e

b
ρ ρ− + − + =

− is zero for all values of ellipticity. A 

corresponding observation can again be made from experiment. The extracted HOC contribution 

for Rb
85

(Fg=2→Fe′) evolve with ellipticity in similar fashion for both LG and Gaussian beams, 

although the curvature is found to flip at different values of ellipticity for both the beam profiles 

(Figure 4.8). 

 

    The difference between EIT and EIA systems subject to Gaussian and LG fields can also be 

seen by plotting the difference in the polarization rotation signal ( )ϕ in the presence and in the 

absence of the TOC process involving 2m∆ = ± coherence - ( ) ( )
2 2(1) (0)b b

ϕ ϕ−  as a function of 

ellipticity (ε) (Figure 4.15). There is not much difference in the ellipticity dependence of 

( ) ( )
2 2(1) (0)b b

ϕ ϕ−  between Gaussian and LG fields for the EIT transition [Figure 4.15 (ii) and 

(iii)]. However, a distinct difference is observed in the case of the EIA transition [Figure 4.15 

(i)]. This suggests that the TOC process which is crucial to the observation of EIA depends on 

the spatial profile of the incident optical field. 
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Figure 4.15:  Difference in the calculated polarization rotation signal at 2 (1)b  and 2 (0)b as a 

function of ellipticity (ε) for Gaussian and LG beams (i) Jg =1 → Je =2, (ii) Jg =1 

→ Je =1 and (iii) Jg =2 → Je =1 transitions respectively. All the other parameters 

are the same as those used in Figure 4.13. 

 

      In a standard density matrix computation, Hanle EIA resonances transform to EIT resonances 

when 
2b  is set to zero, i.e., by removing the TOC contribution from 2m∆ = ±  coherences (Ram et 

al., 2009). When the Hanle EIA ( 2b =1) and EIT ( 2b  =0) resonance amplitudes are plotted as a 

function of ellipticity [Figure 4.16(b)], it is clear that the effect of suppression of TOC with a 

Gaussian field is much more prominent than with a LG field. The associated Hanle profiles for Jg 

=1 → Je =2 for ε = 0
°
, 15

°
 and 35

°
 are shown in Figure 4.16(a). The OAM associated with the 

LG beam is taken as |l| = 1 with / 1000,γΓ = / / 5,
o

G LG
Γ Ω = Γ Ω =  ∆=0, 0 1b b= =1 and 

3mmow = . This again suggests that the TOC process involving 2m∆ = ±  coherences depend on 

the spatial profile of the incident optical field. 
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          (a) 

 

 
 

          (b) 

Figure 4.16: (a) The calculated Hanle resonance for the transition Jg =1 → Je =2 with (i) 

Gaussian and (ii) LG fields for ellipticity ε = 0
°
, 15

°
 and 35

°
 in the presence and in 

the absence of TOC with 2m∆ = ± coherences by turning on or off 
2b ,(b) 

Computed EIA / EIT amplitude as a function of ellipticity for the transition Jg =1 

→ Je =2 with Gaussian and LG fields, using / 1000,γΓ = /  /  5,
o

G LG
Γ Ω = Γ Ω =    

∆=0, 0 1b b=  =1, |l| =1 and 3mmow = . 
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4.5 Conclusions 

 

In summary, we have studied the ellipticity dependence of polarization rotation signals for the D2 

line of Rb atoms with Gaussian and LG probe fields. This study enables us to determine the 

influence of the LG beam on higher order Zeeman coherences by extracting their contribution 

from the measured data. Results were analyzed computationally by choosing a degenerate two - 

level EIT or EIA system, representative of the entire Doppler profile. We find that the extracted 

HOC contribution for Rb
87

(Fg=2→Fe′) (treated computationally with an EIA system) changes 

curvature with ellipticity only for a Gaussian beam while for Rb
85

(Fg=2→Fe′) (treated 

computationally with  an EIT system), a change in curvature is observed for both the optical 

fields at different values of ellipticity. Correspondingly, it is shown that when the TOC process 

involving 2m∆ = ± coherence is varied, the ellipticity dependence of the excited state Zeeman 

coherence 1 1e eρ − +  was found to depend on the spatial profile of the probe optical field for an EIA 

system but not for EIT system. It is also shown that for the EIA system, there is a distinct 

difference in the way the Gaussian and LG fields influences the TOC process involving 

2m∆ = ± coherence. 
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CHAPTER 5 

 

 

Summary and conclusions 

 
 

5.1 Summary of research work 

 

This thesis focuses on the interaction of the Rubidium (Rb) atoms with a coherent Laguerre-

Gaussian (LG) optical field with spatially varying phase factor and mode amplitude. Detailed 

computational and experimental studies have been carried out to understand the effect of the LG 

field on Zeeman coherence induced phenomena like electromagnetically induced transparency 

(EIT), electromagnetically induced absorption (EIA) and nonlinear magneto-optical rotation 

(NMOR). EIT and EIA resonances obtained in Hanle configuration are significantly narrower 

with a LG field compared to a Gaussian field. This suggests that optical fields with non-zero 

orbital angular momentum (OAM) produce long-lived Zeeman coherences. The narrowing is 

observed only for atomic transit time limited resonances and not for spin-exchange collision 

limited resonances. Thus the spatial profile of the LG field influences resonance line shapes only 

if the relaxation time is dependent on spatial coordinates as in transit time relaxation. The 

influence of the LG field on higher order Zeeman coherences (with 2 ±≥∆m ) has been 

investigated by extracting their contribution from ellipticity dependent polarization 

measurements as a function of laser detuning. This study shows that EIA systems (driven by 

excited state coherences) couple differently with the LG field compared to EIT systems (driven 

by ground state coherences). 

 

A detailed list of summary and conclusions is presented below. 

• The LG beam profile brings about a significant narrowing in the line shape of the Hanle 

resonance in comparison to a Gaussian beam. We have shown by computation and 
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experiment that this narrowing and hence long lived Zeeman coherences can be attributed 

to the non-zero azimuthal mode index of the LG field. LG field induced narrowing of 

EIT/EIA profiles may have several important applications such as atomic clocks, slow 

light etc.  

• NMOR due to the transit effect (NMOR-I) and the coherence effect (NMOR-II) have 

been measured for the LG beam. LG beam brings about a narrower NMOR-I profile in 

comparison to the Gaussian beam. There is no significant change in the line-widths of the 

NMOR-II between the Gaussian and LG beam profiles. Unlike the transit effect NMOR, 

the induced atomic coherence persists even if the atom leaves the laser beam. Therefore 

the presence of OAM in the optical field does not influence the line-width in this case. 

• The nonlinear magneto-optical rotation response of the Fg=2→Fe′ =3 transition of Rb
87

 

with magnetic field applied parallel (Faraday geometry) and perpendicular (Voigt 

geometry) to the probe field (Gaussian or LG) direction was studied. The extent of 

narrowing induced by the LG beam, when compared with the Gaussian beam, was found 

to be more in the case of the Voigt geometry.   

• It was shown that the influence of the LG field depends on the nature of the Zeeman 

coherences created ( 1 ±=∆m  or 2 ±=∆m  in this case) which could account for the 

difference in extent of narrowing observed for nonlinear Faraday and Voigt rotation 

signals subject to Gaussian and LG fields. Thus it is seen that the influence of the LG 

field on the Zeeman coherence lifetime is polarization dependent.  

• The ellipticity dependence of polarization rotation signals has been studied for the D2 line 

of Rb atoms with Gaussian and LG probe fields system and the contributions to the 

Zeeman coherences have been extracted from the measured data. Results were analyzed 

computationally by choosing a degenerate two - level EIT or EIA system, representative 

of the entire Doppler profile.  

• The polarization rotation signal and the extracted HOC obtained with LG beam is found 

to be ellipticity dependent for the transitions Rb
85

(Fg=2→Fe′) (treated computationally 

with  an EIT system), the curvature flipping with increase in the value of ellipticity. 

While a similar trend is observed with Gaussian beam, the curvature flip occurs 
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consistently at a lower value of ellipticity for the LG beam than the Gaussian beam. 

• The ellipticity dependence of the measured polarization rotation signal and the extracted 

HOC is weaker for the transition Rb
87

(Fg=2→Fe′) (treated computationally with  an EIA 

system) obtained with the LG beam, the curvature not changing with the increase in the 

value of ellipticity. A similar behavior is observed for the measured polarization rotation 

signal obtained with the Gaussian beam, but the extracted HOC is found to be ellipticity 

dependent, its curvature flipping with the increase in the value of ellipticity. 

• It was shown that when the strength of the TOC process ( 2 ±=∆m coherence) is varied, 

the ellipticity dependence of the excited state Zeeman coherence 11 +− eeρ   was found to 

depend on the spatial profile of the probe optical field for an EIA system but not for EIT 

system. 

• It was also shown that for the EIA system there is a distinct difference in the way the 

Gaussian and LG fields influences the TOC process involving 2 ±=∆m coherence. 

 

5.2 Future outlook of research work 

 
 

• The presence of buffer gas in a vapour cell results in the atoms diffusing through the laser 

beam thus increasing the Zeeman coherence lifetime. It would be of interest to verify the 

effect of the LG beam profile on the Zeeman coherence lifetime and on the nature of the 

higher order coherences that are created in the presence of a buffer gas. 

• It has been shown that, for the EIA system, while manipulating the TOC contribution 

from 2 ±=∆m  coherences (by switching ‘on’ or ‘off’ the branching ratio component 
2b ), 

the effect of suppression of the TOC ( 2 ±=∆m ) is more prominent with a Gaussian beam 

in comparison to the LG beam. This observation needs to be explored experimentally by 

investigating the influence of the LG field on the TOC process for open and closed EIA 

system.  

• EIT has been computationally studied for a lambda system using LG beam and it has 

been predicted that LG field brings about a steeper dispersion in comparison to the 
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Gaussian beam. It was also shown computationally that the LG beam profile reduces the 

group velocity of the light pulse in comparison to a Gaussian beam. It would be interest 

to verify these predictions by carrying out EIT measurements with a LG beam either for a 

lambda like system or for a degenerate two-level system  

• It would also be of interest to carry out slow light measurements with LG field. This 

study will enable us to verify if the storage time, the time delay and the spatial 

compression is enhanced by replacing the Gaussian beam with the LG field as predicted 

in this study. 
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